數(shù)學(xué)運(yùn)算之剩余定理專題
【例1】一個(gè)數(shù)被3除余1,被4除余2,被5除余4,這個(gè)數(shù)最小是幾?
【解析】題中3、4、5三個(gè)數(shù)兩兩互質(zhì)。
則〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。
為了使20被3除余1,用20×2=40;
使15被4除余1,用15×3=45;
使12被5除余1,用12×3=36。
然后,40×1+45×2+36×4=274,
因?yàn)椋?74>60,所以,274-60×4=34,就是所求的數(shù)。
【例2】一個(gè)數(shù)被3除余2,被7除余4,被8除余5,這個(gè)數(shù)最小是幾?在1000內(nèi)符合這樣條件的數(shù)有幾個(gè).?
【解析】題中3、7、8三個(gè)數(shù)兩兩互質(zhì)。
則〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。
為了使56被3除余1,用56×2=112;
使24被7除余1,用24×5=120。
使21被8除余1,用21×5=105;
然后,112×2+120×4+105×5=1229,
因?yàn)椋?229>168,所以,1229-168×7=53,就是所求的數(shù)。
再用(1000-53)/168得5, 所以在1000內(nèi)符合條件的數(shù)有6個(gè).
【例3】一個(gè)數(shù)除以5余4,除以8余3,除以11余2,求滿足條件的最小的自然數(shù)。
【解析】題中5、8、11三個(gè)數(shù)兩兩互質(zhì)。
則〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。
為了使88被5除余1,用88×2=176;
使55被8除余1,用55×7=385;
使40被11除余1,用40×8=320。
然后,176×4+385×3+320×2=2499,
因?yàn)椋?499>440,所以,2499-440×5=299,就是所求的數(shù)。
【例4】有一個(gè)年級的同學(xué),每9人一排多5人,每7人一排多1人,每5人一排多2人,問這個(gè)年級至少有多少人 ?
【解析】題中9、7、5三個(gè)數(shù)兩兩互質(zhì)。
則〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。
為了使35被9除余1,用35×8=280;
使45被7除余1,用45×5=225;
使63被5除余1,用63×2=126。
然后,280×5+225×1+126×2=1877,
因?yàn)椋?877>315,所以,1877-315×5=302,就是所求的數(shù)。
國家 | 北京 | 天津 | 上海 | 江蘇 |
安徽 | 浙江 | 山東 | 江西 | 福建 |
廣東 | 河北 | 湖南 | 廣西 | 河南 |
海南 | 湖北 | 四川 | 重慶 | 云南 |
貴州 | 西藏 | 新疆 | 陜西 | 山西 |
寧夏 | 甘肅 | 青海 | 遼寧 | 吉林 |
黑龍江 | 內(nèi)蒙古 |