首頁 考試吧論壇 Exam8視線 考試商城 網(wǎng)絡(luò)課程 模擬考試 考友錄 實用文檔 求職招聘 論文下載
2011中考 | 2011高考 | 2012考研 | 考研培訓 | 在職研 | 自學考試 | 成人高考 | 法律碩士 | MBA考試
MPA考試 | 中科院
四六級 | 職稱英語 | 商務(wù)英語 | 公共英語 | 托福 | 雅思 | 專四專八 | 口譯筆譯 | 博思 | GRE GMAT
新概念英語 | 成人英語三級 | 申碩英語 | 攻碩英語 | 職稱日語 | 日語學習 | 法語 | 德語 | 韓語
計算機等級考試 | 軟件水平考試 | 職稱計算機 | 微軟認證 | 思科認證 | Oracle認證 | Linux認證
華為認證 | Java認證
公務(wù)員 | 報關(guān)員 | 銀行從業(yè)資格 | 證券從業(yè)資格 | 期貨從業(yè)資格 | 司法考試 | 法律顧問 | 導游資格
報檢員 | 教師資格 | 社會工作者 | 外銷員 | 國際商務(wù)師 | 跟單員 | 單證員 | 物流師 | 價格鑒證師
人力資源 | 管理咨詢師考試 | 秘書資格 | 心理咨詢師考試 | 出版專業(yè)資格 | 廣告師職業(yè)水平
駕駛員 | 網(wǎng)絡(luò)編輯
衛(wèi)生資格 | 執(zhí)業(yè)醫(yī)師 | 執(zhí)業(yè)藥師 | 執(zhí)業(yè)護士
會計從業(yè)資格考試會計證) | 經(jīng)濟師 | 會計職稱 | 注冊會計師 | 審計師 | 注冊稅務(wù)師
注冊資產(chǎn)評估師 | 高級會計師 | ACCA | 統(tǒng)計師 | 精算師 | 理財規(guī)劃師 | 國際內(nèi)審師
一級建造師 | 二級建造師 | 造價工程師 | 造價員 | 咨詢工程師 | 監(jiān)理工程師 | 安全工程師
質(zhì)量工程師 | 物業(yè)管理師 | 招標師 | 結(jié)構(gòu)工程師 | 建筑師 | 房地產(chǎn)估價師 | 土地估價師 | 巖土師
設(shè)備監(jiān)理師 | 房地產(chǎn)經(jīng)紀人 | 投資項目管理師 | 土地登記代理人 | 環(huán)境影響評價師 | 環(huán)保工程師
城市規(guī)劃師 | 公路監(jiān)理師 | 公路造價師 | 安全評價師 | 電氣工程師 | 注冊測繪師 | 注冊計量師
繽紛校園 | 實用文檔 | 英語學習 | 作文大全 | 求職招聘 | 論文下載 | 訪談 | 游戲

2011年4.24聯(lián)考行測數(shù)量關(guān)系解題法:容斥問題

在計數(shù)時,為了使重疊部分不被重復計算,人們研究出一種新的計數(shù)方法,這種方法的基本思想是:先不考慮重疊的情況,把包含于某內(nèi)容中的所有對象的數(shù)目先計算出來,然后再把計數(shù)時重復計算的數(shù)目排斥出去,使得計算的結(jié)果既無遺漏又無重復,這種計數(shù)的方法稱為容斥原理。

  一、知識要點

  在計數(shù)時,為了使重疊部分不被重復計算,人們研究出一種新的計數(shù)方法,這種方法的基本思想是:先不考慮重疊的情況,把包含于某內(nèi)容中的所有對象的數(shù)目先計算出來,然后再把計數(shù)時重復計算的數(shù)目排斥出去,使得計算的結(jié)果既無遺漏又無重復,這種計數(shù)的方法稱為容斥原理。它的基本形式有兩種:

  (1)兩個集合的容斥關(guān)系:記A、B是兩個集合,屬于集合A的東西有A 個,屬于集合B的東西有B個,既屬于集合A又屬于集合B的東西記為 A∩B;屬于集合A或?qū)儆诩螧的東西記為A∪B ,則有:A∪B = A+B - A∩B。

  (2)三集合的容斥關(guān)系:如果被計數(shù)的事物有A、B、C三類,那么,A類和B類和C類元素個數(shù)總和= A類元素個數(shù)+ B類元素個數(shù)+C類元素個數(shù)—既是A類又是B類的元素個數(shù)—既是A類又是C類的元素個數(shù)—既是B類又是C類的元素個數(shù)+既是A類又是B類而且是C類的元素個數(shù)。用符號來表示為:A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C

  二、解題方法

  (1)公式法:當題目中的條件完全符合以下兩個公式時,用公式直接代入求解。

  兩個集合:A∪B = A+B - A∩B=總個數(shù) ------兩者都不滿足的個數(shù)

  三個集合:A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C=總個數(shù)------三者都不滿足的個數(shù)

  (2)畫圖法:條件或者所求不完全能用上述兩個公式表示時,利用文氏圖來解決。畫圖法核心步驟:

  ①畫圈圖; ②填數(shù)字(先填最外一層,再填最內(nèi)一層,然后填中間層); ③做計算。

  (3)三集合整體重復型核心公式:

  假如滿足三個條件的元素數(shù)量分別為A、B、C,總量為M,滿足兩個條件的總和為x,滿足三個條件的個數(shù)為y,三者都不滿足的條件為p,則有:A∪B∪C= A+B+C-x-2y=M-p。

  三、例題解析:

  例1、現(xiàn)有50名學生都做物理、化學實驗,如果物理實驗做正確的有40人,化學實驗做正確的有31人,兩種實驗都做錯的有4人,則兩種實驗都做對的有多少人【2006年國家公務(wù)員一類考試行測第42題】

  A.27人  B.25人  C.19人  D.10人

  【答案】B

  【解析】設(shè)兩種實驗都做對的有x人,根據(jù)核心公式:40+31-x=50-4,解得x=25

  例2、某單位有60名運動員參加運動會開幕式,他們著裝白色或黑色上衣,黑色或藍色褲子。其中有12人穿白上衣藍褲子,有34人穿黑褲子,29人穿黑上衣,那么穿黑上衣黑褲子的有多少人? 【2008年廣東省公務(wù)員考試行測題】

  A.12  B14  C15  D.19

  【答案】C

  【解析】根據(jù)核心公式:34+29-x=60-12,解得x=15

  例3、某專業(yè)有學生50人,現(xiàn)開設(shè)甲、乙、丙三門選修課。有40人選修甲課程,36人選修乙課程,30人選修丙課程,兼選甲、乙兩門課的有28人,兼選甲、丙兩門課的有26人,兼選乙、丙兩門課程的有24人,甲、乙、丙三門課程均選的有20人,問三門課均未選的有多少人?【2009年浙江省公務(wù)員考試題】

  A.1人  B.2人  C.3人  D.4人

  【答案】B

  【解析】根據(jù)核心公式:40+36+30-28-26-24+20=50-x,解得x=2

1 2 3 下一頁
  相關(guān)鏈接:

  2011年4.24聯(lián)考行測數(shù)量關(guān)系解題法:星期日期題

  2011年4.24聯(lián)考行測數(shù)量關(guān)系解題法:十字交叉法

  2011年公務(wù)員考試《行測》盈虧問題解題思路

  公務(wù)員考試《行測》數(shù)量關(guān)系代入排除法解題技巧

文章搜索
在線名師 1 2 3 4
華圖公務(wù)員考試研究中心申論教研室主任,法學博士,中國社會科學院青年學者。長期從事公務(wù)員...詳細
版權(quán)聲明:如果公務(wù)員考試網(wǎng)所轉(zhuǎn)載內(nèi)容不慎侵犯了您的權(quán)益,請與我們聯(lián)系800@exam8.com,我們將會及時處理。如轉(zhuǎn)載本公務(wù)員考試網(wǎng)內(nèi)容,請注明出處。