常用算法設(shè)計(jì)方法
寧波高等?茖W(xué)校電子系 周文革
要使計(jì)算機(jī)能完成人們預(yù)定的工作,首先必須為如何完成預(yù)定的工作設(shè)計(jì)一個(gè)算法,然后再根據(jù)算法編寫程序。計(jì)算機(jī)程序要對(duì)問(wèn)題的每個(gè)對(duì)象和處理規(guī)則給出正確詳盡的描述,其中程序的數(shù)據(jù)結(jié)構(gòu)和變量用來(lái)描述問(wèn)題的對(duì)象,程序結(jié)構(gòu)、函數(shù)和語(yǔ)句用來(lái)描述問(wèn)題的算法。算法數(shù)據(jù)結(jié)構(gòu)是程序的兩個(gè)重要方面。
算法是問(wèn)題求解過(guò)程的精確描述,一個(gè)算法由有限條可完全機(jī)械地執(zhí)行的、有確定結(jié)果的指令組成。指令正確地描述了要完成的任務(wù)和它們被執(zhí)行的順序。計(jì)算機(jī)按算法指令所描述的順序執(zhí)行算法的指令能在有限的步驟內(nèi)終止,或終止于給出問(wèn)題的解,或終止于指出問(wèn)題對(duì)此輸入數(shù)據(jù)無(wú)解。
通常求解一個(gè)問(wèn)題可能會(huì)有多種算法可供選擇,選擇的主要標(biāo)準(zhǔn)是算法的正確性和可靠性,簡(jiǎn)單性和易理解性。其次是算法所需要的存儲(chǔ)空間少和執(zhí)行更快等。
算法設(shè)計(jì)是一件非常困難的工作,經(jīng)常采用的算法設(shè)計(jì)技術(shù)主要有迭代法、窮舉搜索法、遞推法、貪婪法、回溯法、分治法、動(dòng)態(tài)規(guī)劃法等等。另外,為了更簡(jiǎn)潔的形式設(shè)計(jì)和藐視算法,在算法設(shè)計(jì)時(shí)又常常采用遞歸技術(shù),用遞歸描述算法。
一、迭代法
迭代法是用于求方程或方程組近似根的一種常用的算法設(shè)計(jì)方法。設(shè)方程為f(x)=0,用某種數(shù)學(xué)方法導(dǎo)出等價(jià)的形式x=g(x),然后按以下步驟執(zhí)行:
(1) 選一個(gè)方程的近似根,賦給變量x0;
(2) 將x0的值保存于變量x1,然后計(jì)算g(x1),并將結(jié)果存于變量x0;
(3) 當(dāng)x0與x1的差的絕對(duì)值還小于指定的精度要求時(shí),重復(fù)步驟(2)的計(jì)算。
若方程有根,并且用上述方法計(jì)算出來(lái)的近似根序列收斂,則按上述方法求得的x0就認(rèn)為是方程的根。上述算法用C程序的形式表示為:
【算法】迭代法求方程的根
{ x0=初始近似根;
do {
x1=x0;
x0=g(x1); /*按特定的方程計(jì)算新的近似根*/
} while ( fabs(x0-x1)>Epsilon);
printf(“方程的近似根是%f\n”,x0);
}
迭代算法也常用于求方程組的根,令
X=(x0,x1,…,xn-1)
設(shè)方程組為:
xi=gi(X) (I=0,1,…,n-1)
則求方程組根的迭代算法可描述如下:
【算法】迭代法求方程組的根
{ for (i=0;i<n;i++)
x[i]=初始近似根;
do {
for (i=0;i<n;i++)
y[i]=x[i];
for (i=0;i<n;i++)
x[i]=gi(X);
for (delta=0.0,i=0;i<n;i++)
if (fabs(y[i]-x[i])>delta) delta=fabs(y[i]-x[i]);
} while (delta>Epsilon);
for (i=0;i<n;i++)
printf(“變量x[%d]的近似根是 %f”,I,x[i]);
printf(“\n”);
}
具體使用迭代法求根時(shí)應(yīng)注意以下兩種可能發(fā)生的情況:
(1) 如果方程無(wú)解,算法求出的近似根序列就不會(huì)收斂,迭代過(guò)程會(huì)變成死循環(huán),因此在使用迭代算法前應(yīng)先考察方程是否有解,并在程序中對(duì)迭代的次數(shù)給予限制;
(2) 方程雖然有解,但迭代公式選擇不當(dāng),或迭代的初始近似根選擇不合理,也會(huì)導(dǎo)致迭代失敗。
二、窮舉搜索法
窮舉搜索法是對(duì)可能是解的眾多候選解按某種順序進(jìn)行逐一枚舉和檢驗(yàn),并從眾找出那些符合要求的候選解作為問(wèn)題的解。
【問(wèn)題】 將A、B、C、D、E、F這六個(gè)變量排成如圖所示的三角形,這六個(gè)變量分別取[1,6]上的整數(shù),且均不相同。求使三角形三條邊上的變量之和相等的全部解。如圖就是一個(gè)解。
程序引入變量a、b、c、d、e、f,并讓它們分別順序取1至6的證書,在它們互不相同的條件下,測(cè)試由它們排成的如圖所示的三角形三條邊上的變量之和是否相等,如相等即為一種滿足要求的排列,把它們輸出。當(dāng)這些變量取盡所有的組合后,程序就可得到全部可能的解。細(xì)節(jié)見(jiàn)下面的程序。
【程序1】
# include <stdio.h>
void main()
{ int a,b,c,d,e,f;
for (a=1;a<=6;a++)
for (b=1;b<=6;b++) {
if (b==a) continue;
for (c=1;c<=6;c++) {
if (c==a)||(c==b) continue;
for (d=1;d<=6;d++) {
if (d==a)||(d==b)||(d==c) continue;
for (e=1;e<=6;e++) {
if (e==a)||(e==b)||(e==c)||(e==d) continue;
f=21-(a+b+c+d+e);
if ((a+b+c==c+d+e))&&(a+b+c==e+f+a)) {
printf(“%6d,a);
printf(“%4d%4d”,b,f);
printf(“%2d%4d%4d”,c,d,e);
scanf(“%*c”);
}
}
}
}
}
}
按窮舉法編寫的程序通常不能適應(yīng)變化的情況。如問(wèn)題改成有9個(gè)變量排成三角形,每條邊有4個(gè)變量的情況,程序的循環(huán)重?cái)?shù)就要相應(yīng)改變。
對(duì)一組數(shù)窮盡所有排列,還有更直接的方法。將一個(gè)排列看作一個(gè)長(zhǎng)整數(shù),則所有排列對(duì)應(yīng)著一組整數(shù)。將這組整數(shù)按從小到大的順序排列排成一個(gè)整數(shù),從對(duì)應(yīng)最小的整數(shù)開始。按數(shù)列的遞增順序逐一列舉每個(gè)排列對(duì)應(yīng)的每個(gè)整數(shù),這能更有效地完成排列的窮舉。從一個(gè)排列找出對(duì)應(yīng)數(shù)列的下一個(gè)排列可在當(dāng)前排列的基礎(chǔ)上作部分調(diào)整來(lái)實(shí)現(xiàn)。倘若當(dāng)前排列為1,2,4,6,5,3,并令其對(duì)應(yīng)的長(zhǎng)整數(shù)為124653。要尋找比長(zhǎng)整數(shù)124653更大的排列,可從該排列的最后一個(gè)數(shù)字順序向前逐位考察,當(dāng)發(fā)現(xiàn)排列中的某個(gè)數(shù)字比它前一個(gè)數(shù)字大時(shí),如本例中的6比它的前一位數(shù)字4大,這說(shuō)明還有對(duì)應(yīng)更大整數(shù)的排列。但為了順序從小到大列舉出所有的排列,不能立即調(diào)整得太大,如本例中將數(shù)字6與數(shù)字4交換得到的排列126453就不是排列124653的下一個(gè)排列。為了得到排列124653的下一個(gè)排列,應(yīng)從已經(jīng)考察過(guò)的那部分?jǐn)?shù)字中選出比數(shù)字大,但又是它們中最小的那一個(gè)數(shù)字,比如數(shù)字5,與數(shù)字4交換。該數(shù)字也是從后向前考察過(guò)程中第一個(gè)比4大的數(shù)字。5與4交換后,得到排列125643。在前面數(shù)字1,2,5固定的情況下,還應(yīng)選擇對(duì)應(yīng)最小整數(shù)的那個(gè)排列,為此還需將后面那部分?jǐn)?shù)字的排列順序顛倒,如將數(shù)字6,4,3的排列順序顛倒,得到排列1,2,5,3,4,6,這才是排列1,2,4,6,5,3的下一個(gè)排列。按以上想法編寫的程序如下。
【程序2】
# include <stdio.h>
# define SIDE_N 3
# define LENGTH 3
# define VARIABLES 6
int A,B,C,D,E,F;
int *pt[]={&A,&B,&C,&D,&E,&F};
int *side[SIDE_N][LENGTH]={&A,&B,&C,&C,&D,&E,&E,&F,&A};
int side_total[SIDE_N];
main{}
{ int i,j,t,equal;
for (j=0;j<VARIABLES;j++)
*pt[j]=j+1;
while(1)
{ for (i=0;i<SIDE_N;i++)
{ for (t=j=0;j<LENGTH;j++)
t+=*side[i][j];
side_total[i]=t;
}
for (equal=1,i=0;equal&&i<SIDE_N-1;i++)
if (side_total[i]!=side_total[i+1] equal=0;
if (equal)
{ for (i=1;i<VARIABLES;i++)
printf(“%4d”,*pt[i]);
printf(“\n”);
scanf(“%*c”);
}
for (j=VARIABLES-1;j>0;j--)
if (*pt[j]>*pt[j-1]) break;
if (j==0) break;
for (i=VARIABLES-1;i>=j;i--)
if (*pt[i]>*pt[i-1]) break;
t=*pt[j-1];* pt[j-1] =* pt[i]; *pt[i]=t;
for (i=VARIABLES-1;i>j;i--,j++)
{ t=*pt[j]; *pt[j] =* pt[i]; *pt[i]=t; }
}
}
從上述問(wèn)題解決的方法中,最重要的因素就是確定某種方法來(lái)確定所有的候選解。下面再用一個(gè)示例來(lái)加以說(shuō)明。
【問(wèn)題】 背包問(wèn)題
問(wèn)題描述:有不同價(jià)值、不同重量的物品n件,求從這n件物品中選取一部分物品的選擇方案,使選中物品的總重量不超過(guò)指定的限制重量,但選中物品的價(jià)值之和最大。
設(shè)n個(gè)物品的重量和價(jià)值分別存儲(chǔ)于數(shù)組w[ ]和v[ ]中,限制重量為tw?紤]一個(gè)n元組(x0,x1,…,xn-1),其中xi=0 表示第i個(gè)物品沒(méi)有選取,而xi=1則表示第i個(gè)物品被選取。顯然這個(gè)n元組等價(jià)于一個(gè)選擇方案。用枚舉法解決背包問(wèn)題,需要枚舉所有的選取方案,而根據(jù)上述方法,我們只要枚舉所有的n元組,就可以得到問(wèn)題的解。
顯然,每個(gè)分量取值為0或1的n元組的個(gè)數(shù)共為2n個(gè)。而每個(gè)n元組其實(shí)對(duì)應(yīng)了一個(gè)長(zhǎng)度為n的二進(jìn)制數(shù),且這些二進(jìn)制數(shù)的取值范圍為0~2n-1。因此,如果把0~2n-1分別轉(zhuǎn)化為相應(yīng)的二進(jìn)制數(shù),則可以得到我們所需要的2n個(gè)n元組。
【算法】
maxv=0;
for (i=0;i<2n;i++)
{ B[0..n-1]=0;
把i轉(zhuǎn)化為二進(jìn)制數(shù),存儲(chǔ)于數(shù)組B中;
temp_w=0;
temp_v=0;
for (j=0;j<n;j++)
{ if (B[j]==1)
{ temp_w=temp_w+w[j];
temp_v=temp_v+v[j];
}
if ((temp_w<=tw)&&(temp_v>maxv))
{ maxv=temp_v;
保存該B數(shù)組;
}
}
}
三、遞推法
遞推法是利用問(wèn)題本身所具有的一種遞推關(guān)系求問(wèn)題解的一種方法。設(shè)要求問(wèn)題規(guī)模為N的解,當(dāng)N=1時(shí),解或?yàn)橐阎,或能非常方便地得到解。能采用遞推法構(gòu)造算法的問(wèn)題有重要的遞推性質(zhì),即當(dāng)?shù)玫絾?wèn)題規(guī)模為i-1的解后,由問(wèn)題的遞推性質(zhì),能從已求得的規(guī)模為1,2,…,i-1的一系列解,構(gòu)造出問(wèn)題規(guī)模為I的解。這樣,程序可從i=0或i=1出發(fā),重復(fù)地,由已知至i-1規(guī)模的解,通過(guò)遞推,獲得規(guī)模為i的解,直至得到規(guī)模為N的解。
【問(wèn)題】 階乘計(jì)算
問(wèn)題描述:編寫程序,對(duì)給定的n(n≦100),計(jì)算并輸出k的階乘k。k=1,2,…,n)的全部有效數(shù)字。
由于要求的整數(shù)可能大大超出一般整數(shù)的位數(shù),程序用一維數(shù)組存儲(chǔ)長(zhǎng)整數(shù),存儲(chǔ)長(zhǎng)整數(shù)數(shù)組的每個(gè)元素只存儲(chǔ)長(zhǎng)整數(shù)的一位數(shù)字。如有m位成整數(shù)N用數(shù)組a[ ]存儲(chǔ):
N=a[m]×10m-1+a[m-1]×10m-2+ … +a[2]×101+a[1]×100
并用a[0]存儲(chǔ)長(zhǎng)整數(shù)N的位數(shù)m,即a[0]=m。按上述約定,數(shù)組的每個(gè)元素存儲(chǔ)k的階乘k!的一位數(shù)字,并從低位到高位依次存于數(shù)組的第二個(gè)元素、第三個(gè)元素……。例如,5!=120,在數(shù)組中的存儲(chǔ)形式為:
3 |
0 |
2 |
1 |
…… |
首元素3表示長(zhǎng)整數(shù)是一個(gè)3位數(shù),接著是低位到高位依次是0、2、1,表示成整數(shù)120。
計(jì)算階乘k!可采用對(duì)已求得的階乘(k-1)!連續(xù)累加k-1次后求得。例如,已知4!=24,計(jì)算5!,可對(duì)原來(lái)的24累加4次24后得到120。細(xì)節(jié)見(jiàn)以下程序。
# include <stdio.h>
# include <malloc.h>
# define MAXN 1000
void pnext(int a[ ],int k)
{ int *b,m=a[0],i,j,r,carry;
b=(int * ) malloc(sizeof(int)* (m+1));
for ( i=1;i<=m;i++) b[i]=a[i];
for ( j=1;j<=k;j++)
{ for ( carry=0,i=1;i<=m;i++)
{ r=(i<a[0]?a[i]+b[i]:a[i])+carry;
a[i]=r%10;
carry=r/10;
}
if (carry) a[++m]=carry;
}
free(b);
a[0]=m;
}
void write(int *a,int k)
{ int i;
printf(“%4d!=”,k);
for (i=a[0];i>0;i--)
printf(“%d”,a[i]);
printf(“\n\n”);
}
void main()
{ int a[MAXN],n,k;
printf(“Enter the number n: “);
scanf(“%d”,&n);
a[0]=1;
a[1]=1;
write(a,1);
for (k=2;k<=n;k++)
{ pnext(a,k);
write(a,k);
getchar();
}
}
四、遞歸
遞歸是設(shè)計(jì)和描述算法的一種有力的工具,由于它在復(fù)雜算法的描述中被經(jīng)常采用,為此在進(jìn)一步介紹其他算法設(shè)計(jì)方法之前先討論它。
能采用遞歸描述的算法通常有這樣的特征:為求解規(guī)模為N的問(wèn)題,設(shè)法將它分解成規(guī)模較小的問(wèn)題,然后從這些小問(wèn)題的解方便地構(gòu)造出大問(wèn)題的解,并且這些規(guī)模較小的問(wèn)題也能采用同樣的分解和綜合方法,分解成規(guī)模更小的問(wèn)題,并從這些更小問(wèn)題的解構(gòu)造出規(guī)模較大問(wèn)題的解。特別地,當(dāng)規(guī)模N=1時(shí),能直接得解。
【問(wèn)題】 編寫計(jì)算斐波那契(Fibonacci)數(shù)列的第n項(xiàng)函數(shù)fib(n)。
斐波那契數(shù)列為:0、1、1、2、3、……,即:
fib(0)=0;
fib(1)=1;
fib(n)=fib(n-1)+fib(n-2) (當(dāng)n>1時(shí))。
寫成遞歸函數(shù)有:
int fib(int n)
{ if (n==0) return 0;
if (n==1) return 1;
if (n>1) return fib(n-1)+fib(n-2);
}