2015年中考數(shù)學(xué)知識(shí)點(diǎn)匯總:三角函數(shù)的知識(shí)點(diǎn)總結(jié)
三角函數(shù)萬(wàn)能公式
萬(wàn)能公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
證明下面兩式,只需將一式,左右同除(sinα)^2,第二個(gè)除(cosα)^2即可
(4)對(duì)于任意非直角三角形,總有
tanA+tanB+tanC=tanAtanBtanC
證:
A+B=π-C
tan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得證
同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時(shí),該關(guān)系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
萬(wàn)能公式為:
設(shè)tan(A/2)=t
sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)
tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)
cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k∈Z)
就是說(shuō)sinA.tanA.cosA都可以用tan(A/2)來(lái)表示,當(dāng)要求一串函數(shù)式最值的時(shí)候,就可以用萬(wàn)能公式,推導(dǎo)成只含有一個(gè)變量的函數(shù),最值就很好求了.
三角函數(shù)關(guān)系
倒數(shù)關(guān)系
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關(guān)系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
編輯推薦:
2015中考政治備考:2014年國(guó)內(nèi)國(guó)際時(shí)事政治總結(jié)
·2021年中考數(shù)學(xué)知識(shí)點(diǎn)及考點(diǎn)匯總 (2021-4-28 11:34:37)
·2021年中考數(shù)學(xué)一次不等式組知識(shí)點(diǎn)總結(jié) (2021-4-28 11:33:25)
·2021年中考數(shù)學(xué)平面直角坐標(biāo)與函數(shù)知識(shí)點(diǎn)總結(jié) (2021-4-28 11:32:16)
·2021年中考數(shù)學(xué)一次函數(shù)的圖像及性質(zhì)知識(shí)點(diǎn)總結(jié) (2021-4-28 11:30:43)
·2021年中考數(shù)學(xué)二次函數(shù)的圖像及性質(zhì)知識(shí)點(diǎn)總結(jié) (2021-4-28 11:28:38)
2022年海南中考地理真題及答案已公布
2022年海南中考生物真題及答案已公布
2022年海南中考?xì)v史真題及答案已公布
2022年海南中考政治真題及答案已公布
2022年海南中考化學(xué)真題及答案已公布
2022年海南中考物理真題及答案已公布
2022年海南中考英語(yǔ)真題及答案已公布
2022年海南中考數(shù)學(xué)真題及答案已公布
2022年海南中考語(yǔ)文真題及答案已公布
2022年福建漳州中考成績(jī)查詢?nèi)肟谝验_(kāi)通
2022廣東汕尾中考成績(jī)7月13日公布
2022年黑龍江齊齊哈爾中考成績(jī)查詢?nèi)肟谝?/a>
2022年黑龍江哈爾濱中考成績(jī)查詢?nèi)肟谝验_(kāi)
2022年安徽亳州中考成績(jī)7月2日公布
2022年安徽銅陵中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)
2022年福建廈門中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)
2022寧夏銀川中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)擊
2022年吉安市中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)擊
國(guó)家 | 北京 | 天津 | 上海 | 重慶 |
河北 | 山西 | 遼寧 | 吉林 | 江蘇 |
浙江 | 安徽 | 福建 | 江西 | 山東 |
河南 | 湖北 | 湖南 | 廣東 | 廣西 |
海南 | 四川 | 貴州 | 云南 | 西藏 |
陜西 | 甘肅 | 寧夏 | 青海 | 新疆 |
黑龍江 | 內(nèi)蒙古 | 更多 |
·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽(tīng) ·經(jīng)濟(jì)師考試培訓(xùn) 試聽(tīng)
·執(zhí)業(yè)藥師考試培訓(xùn) 試聽(tīng) ·報(bào)關(guān)員考試培訓(xùn) 試聽(tīng)
·銀行從業(yè)考試培訓(xùn) 試聽(tīng) ·會(huì)計(jì)證考試培訓(xùn) 試聽(tīng)
·證券從業(yè)考試培訓(xùn) 試聽(tīng) ·華圖公務(wù)員培訓(xùn) 試聽(tīng)
·二級(jí)建造師考試培訓(xùn) 試聽(tīng) ·公務(wù)員培訓(xùn) 網(wǎng)校 試聽(tīng)
·一級(jí)建造師考試培訓(xùn) 試聽(tīng) ·結(jié)構(gòu)師考試培訓(xùn) 試聽(tīng)
·注冊(cè)建筑師考試培訓(xùn) 試聽(tīng) ·造價(jià)師考試培訓(xùn) 試聽(tīng)
·質(zhì)量資格考試培訓(xùn) 試聽(tīng) ·咨詢師考試培訓(xùn) 試聽(tīng)
·衛(wèi)生職稱考試培訓(xùn) 試聽(tīng) ·監(jiān)理師考試培訓(xùn) 試聽(tīng)
·報(bào)關(guān)員考試培訓(xùn) 試聽(tīng) ·經(jīng)濟(jì)師考試培訓(xùn) 試聽(tīng)
·銀行從業(yè)考試培訓(xùn) 試聽(tīng) ·會(huì)計(jì)證考試培訓(xùn) 試聽(tīng)
·證券從業(yè)考試培訓(xùn) 試聽(tīng) ·注冊(cè)會(huì)計(jì)師培訓(xùn) 試聽(tīng)
·期貨從業(yè)考試培訓(xùn) 試聽(tīng) ·統(tǒng)計(jì)師考試培訓(xùn) 試聽(tīng)
·國(guó)際商務(wù)師考試培訓(xùn) 試聽(tīng) ·稅務(wù)師考試培訓(xùn) 試聽(tīng)
·人力資源師考試培訓(xùn) 試聽(tīng) ·評(píng)估師考試培訓(xùn) 試聽(tīng)
·管理咨詢師考試培訓(xùn) 試聽(tīng) ·審計(jì)師考試培訓(xùn) 試聽(tīng)
·報(bào)檢員考試培訓(xùn) 試聽(tīng) ·高級(jí)會(huì)計(jì)師考試培訓(xùn) 試聽(tīng)
·外銷員考試培訓(xùn) 試聽(tīng) ·公務(wù)員 試聽(tīng) 教育門戶
·二級(jí)建造師考試培訓(xùn) 試聽(tīng) ·招標(biāo)師考試培訓(xùn) 試聽(tīng)
·造價(jià)師考試培訓(xùn) 試聽(tīng) ·物業(yè)管理師考試培訓(xùn) 試聽(tīng)
·監(jiān)理師考試培訓(xùn) 試聽(tīng) ·設(shè)備監(jiān)理師考試培訓(xùn) 試聽(tīng)
·安全師考試培訓(xùn) 試聽(tīng) ·巖土工程師考試培訓(xùn) 試聽(tīng)
·咨詢師考試培訓(xùn) 試聽(tīng) ·投資項(xiàng)目管理師培訓(xùn) 試聽(tīng)
·結(jié)構(gòu)師考試培訓(xùn) 試聽(tīng) ·公路監(jiān)理師考試培訓(xùn) 試聽(tīng)
·建筑師考試培訓(xùn) 試聽(tīng) ·衛(wèi)生資格考試培訓(xùn) 試聽(tīng)
·質(zhì)量資格考試培訓(xùn) 試聽(tīng) ·執(zhí)業(yè)藥師考試培訓(xùn) 試聽(tīng)
·造價(jià)員考試培訓(xùn) 試聽(tīng) ·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽(tīng)