例1.如圖,弓形弦AB=6,弓形高為1,則其所在圓的半徑為_(kāi)____。
[解析]:作弦AB的垂直平分線,分別交-、弦AB于C、D兩點(diǎn)。則CD為弓形的高,由垂徑定理的推論知圓心O一定在直線CD上,設(shè)圓心O在如圖所示的位置,半徑為r,連結(jié)BD,在Rt△BDO中,BD=3,BO=r,OD=r-1,由勾股定理得32+(r-1)2=r2,解得r=5。答案:5
[點(diǎn)評(píng)]:此題運(yùn)用了“垂直弦、平分弦就過(guò)圓心且過(guò)弧的中點(diǎn)”的垂徑定理的推論。
例2.已知⊙O的半徑為2cm,弦AB長(zhǎng)為2-cm,則這條弦的中點(diǎn)到弦所對(duì)劣弧的中點(diǎn)的距離為_(kāi)____。
[解析]:如圖,取弧AB的中點(diǎn)C,弦AB的中點(diǎn)D,連結(jié)CD并延長(zhǎng),由垂徑定理的推論知圓心O一定在直線CD上,且OC⊥AB。在Rt△ADO中,AD=-,AO=2,由勾股定理可求得OD=1,∴弦的中點(diǎn)到弦所對(duì)劣弧的中點(diǎn)的距離CD=2-1=1。
答案:1
[點(diǎn)評(píng)]:此題運(yùn)用了“過(guò)弧的中點(diǎn)、過(guò)弦的中點(diǎn)就過(guò)圓心且垂直于弦”的垂徑定理的推論。
例3.如圖,⊙O的直徑為10,弦AB為8,P是弦AB上一動(dòng)點(diǎn),若OP的長(zhǎng)為整數(shù),則滿足條件的點(diǎn)P有____個(gè)。
[解析]:過(guò)O點(diǎn)作OC⊥AB于C,由垂徑定理可得AC=BC=4,在Rt△ACO中,由勾股定理可求得OC=3,由P點(diǎn)在線段AB上的位置可知當(dāng)P點(diǎn)運(yùn)動(dòng)到C點(diǎn)時(shí),OP最短且長(zhǎng)為整數(shù)3,當(dāng)P點(diǎn)運(yùn)動(dòng)到A、B兩點(diǎn)時(shí),OP最長(zhǎng)且長(zhǎng)為整數(shù)5,由于數(shù)軸上的點(diǎn)與實(shí)數(shù)具有一一對(duì)應(yīng)的關(guān)系,可知A點(diǎn)和C點(diǎn)之間必存在一點(diǎn)P,使OP的長(zhǎng)為4,同理B點(diǎn)和C點(diǎn)之間也存在一點(diǎn)P,使OP的長(zhǎng)為4。
∴滿足條件的點(diǎn)P一共有5個(gè)。
答案:5
[點(diǎn)評(píng)]:此題運(yùn)用了“過(guò)圓心、垂直弦,就平分弦”的垂徑定理。
·2021年中考數(shù)學(xué)知識(shí)點(diǎn)及考點(diǎn)匯總 (2021-4-28 11:34:37)
·2021年中考數(shù)學(xué)一次不等式組知識(shí)點(diǎn)總結(jié) (2021-4-28 11:33:25)
·2021年中考數(shù)學(xué)平面直角坐標(biāo)與函數(shù)知識(shí)點(diǎn)總結(jié) (2021-4-28 11:32:16)
·2021年中考數(shù)學(xué)一次函數(shù)的圖像及性質(zhì)知識(shí)點(diǎn)總結(jié) (2021-4-28 11:30:43)
·2021年中考數(shù)學(xué)二次函數(shù)的圖像及性質(zhì)知識(shí)點(diǎn)總結(jié) (2021-4-28 11:28:38)
2022年海南中考地理真題及答案已公布
2022年海南中考生物真題及答案已公布
2022年海南中考?xì)v史真題及答案已公布
2022年海南中考政治真題及答案已公布
2022年海南中考化學(xué)真題及答案已公布
2022年海南中考物理真題及答案已公布
2022年海南中考英語(yǔ)真題及答案已公布
2022年海南中考數(shù)學(xué)真題及答案已公布
2022年海南中考語(yǔ)文真題及答案已公布
2022年福建漳州中考成績(jī)查詢?nèi)肟谝验_(kāi)通
2022廣東汕尾中考成績(jī)7月13日公布
2022年黑龍江齊齊哈爾中考成績(jī)查詢?nèi)肟谝?/a>
2022年黑龍江哈爾濱中考成績(jī)查詢?nèi)肟谝验_(kāi)
2022年安徽亳州中考成績(jī)7月2日公布
2022年安徽銅陵中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)
2022年福建廈門中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)
2022寧夏銀川中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)擊
2022年吉安市中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)擊
國(guó)家 | 北京 | 天津 | 上海 | 重慶 |
河北 | 山西 | 遼寧 | 吉林 | 江蘇 |
浙江 | 安徽 | 福建 | 江西 | 山東 |
河南 | 湖北 | 湖南 | 廣東 | 廣西 |
海南 | 四川 | 貴州 | 云南 | 西藏 |
陜西 | 甘肅 | 寧夏 | 青海 | 新疆 |
黑龍江 | 內(nèi)蒙古 | 更多 |
·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽(tīng) ·經(jīng)濟(jì)師考試培訓(xùn) 試聽(tīng)
·執(zhí)業(yè)藥師考試培訓(xùn) 試聽(tīng) ·報(bào)關(guān)員考試培訓(xùn) 試聽(tīng)
·銀行從業(yè)考試培訓(xùn) 試聽(tīng) ·會(huì)計(jì)證考試培訓(xùn) 試聽(tīng)
·證券從業(yè)考試培訓(xùn) 試聽(tīng) ·華圖公務(wù)員培訓(xùn) 試聽(tīng)
·二級(jí)建造師考試培訓(xùn) 試聽(tīng) ·公務(wù)員培訓(xùn) 網(wǎng)校 試聽(tīng)
·一級(jí)建造師考試培訓(xùn) 試聽(tīng) ·結(jié)構(gòu)師考試培訓(xùn) 試聽(tīng)
·注冊(cè)建筑師考試培訓(xùn) 試聽(tīng) ·造價(jià)師考試培訓(xùn) 試聽(tīng)
·質(zhì)量資格考試培訓(xùn) 試聽(tīng) ·咨詢師考試培訓(xùn) 試聽(tīng)
·衛(wèi)生職稱考試培訓(xùn) 試聽(tīng) ·監(jiān)理師考試培訓(xùn) 試聽(tīng)
·報(bào)關(guān)員考試培訓(xùn) 試聽(tīng) ·經(jīng)濟(jì)師考試培訓(xùn) 試聽(tīng)
·銀行從業(yè)考試培訓(xùn) 試聽(tīng) ·會(huì)計(jì)證考試培訓(xùn) 試聽(tīng)
·證券從業(yè)考試培訓(xùn) 試聽(tīng) ·注冊(cè)會(huì)計(jì)師培訓(xùn) 試聽(tīng)
·期貨從業(yè)考試培訓(xùn) 試聽(tīng) ·統(tǒng)計(jì)師考試培訓(xùn) 試聽(tīng)
·國(guó)際商務(wù)師考試培訓(xùn) 試聽(tīng) ·稅務(wù)師考試培訓(xùn) 試聽(tīng)
·人力資源師考試培訓(xùn) 試聽(tīng) ·評(píng)估師考試培訓(xùn) 試聽(tīng)
·管理咨詢師考試培訓(xùn) 試聽(tīng) ·審計(jì)師考試培訓(xùn) 試聽(tīng)
·報(bào)檢員考試培訓(xùn) 試聽(tīng) ·高級(jí)會(huì)計(jì)師考試培訓(xùn) 試聽(tīng)
·外銷員考試培訓(xùn) 試聽(tīng) ·公務(wù)員 試聽(tīng) 教育門戶
·二級(jí)建造師考試培訓(xùn) 試聽(tīng) ·招標(biāo)師考試培訓(xùn) 試聽(tīng)
·造價(jià)師考試培訓(xùn) 試聽(tīng) ·物業(yè)管理師考試培訓(xùn) 試聽(tīng)
·監(jiān)理師考試培訓(xùn) 試聽(tīng) ·設(shè)備監(jiān)理師考試培訓(xùn) 試聽(tīng)
·安全師考試培訓(xùn) 試聽(tīng) ·巖土工程師考試培訓(xùn) 試聽(tīng)
·咨詢師考試培訓(xùn) 試聽(tīng) ·投資項(xiàng)目管理師培訓(xùn) 試聽(tīng)
·結(jié)構(gòu)師考試培訓(xùn) 試聽(tīng) ·公路監(jiān)理師考試培訓(xùn) 試聽(tīng)
·建筑師考試培訓(xùn) 試聽(tīng) ·衛(wèi)生資格考試培訓(xùn) 試聽(tīng)
·質(zhì)量資格考試培訓(xùn) 試聽(tīng) ·執(zhí)業(yè)藥師考試培訓(xùn) 試聽(tīng)
·造價(jià)員考試培訓(xùn) 試聽(tīng) ·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽(tīng)