各地中考
您現(xiàn)在的位置: 考試吧 > 2021中考 > 中考競(jìng)賽 > 數(shù)學(xué)競(jìng)賽 > 正文

2011年中招考試:《初中數(shù)學(xué)》競(jìng)賽講座(28)

考試吧提供了“22011年中招考試:《初中數(shù)學(xué)》競(jìng)賽講座”,幫助考生梳理知識(shí)點(diǎn),備戰(zhàn)2011年中招考試。

  5.“拆”、“并”和通分

  下面重點(diǎn)介紹分式的變形:

  (1) 分離分式 為了討論某些用分式表示的數(shù)的性質(zhì),有時(shí)要將一個(gè)分式表示為一個(gè)整式和一個(gè)分式的代數(shù)和.

  例8(第1屆國(guó)際數(shù)學(xué)競(jìng)賽試題)證明對(duì)于任意自然數(shù)n,分?jǐn)?shù)皆不可約.,

  證明 如果一個(gè)假分?jǐn)?shù)可以通約,化為帶分?jǐn)?shù)后,它的真分?jǐn)?shù)部分也必定可以通約.

  而

  顯然不可通約,故不可通約,從而也不可通約.

  (2) 表示成部分分式 將一個(gè)分式表示為部分分式就是將分式化為若干個(gè)真分式的代數(shù)和.

  例9 設(shè)n為正整數(shù),求證:

 、 ②

  證明 令

  通分,

  比較①、②兩式,得A-B=0,且A+B=1,即A=B=.

  ∴

  令k=1,2,…,n得

  (3)通分 通分是分式中最基本的變形,例9的變形就是以通分為基礎(chǔ)的,下面再看一個(gè)技巧性較強(qiáng)的例子.

  例10(1986年冬令營(yíng)賽前訓(xùn)練題)

  已知

  求證:.

  證明

  6.其他變形

  例11 (1985年全國(guó)初中競(jìng)賽題)已知x(x≠0,±1)和1兩個(gè)數(shù),如果只許用加法、減法和1作被除數(shù)的除法三種運(yùn)算(可用括號(hào)),經(jīng)過(guò)六步算出x2.那么計(jì)算的表達(dá)式是______.

  解 x2=x(x+1)-x

  或 x2=x(x-1)+x

  例12 (第3屆美國(guó)中學(xué)生數(shù)學(xué)競(jìng)賽題)設(shè)a、b、c、d都是正整數(shù),且a5=b4,c3=d2,c-a=19,求d-b.

  解 由質(zhì)因數(shù)分解的唯一性及a5=b4,c3=d2,可設(shè)a=x4,c=y2,故

  19=c-a=(y2-x4)=(y-x2)(y+x2)

  解得 x=3. y=10. ∴ d-b=y3-x5=757

  相關(guān)推薦:

  2011年中招考試:《初中數(shù)學(xué)》競(jìng)賽講座匯總

  2011年中考數(shù)學(xué)備考輔導(dǎo):選擇題精選匯總

  名師解讀南京2011年中考數(shù)學(xué)命題趨勢(shì)

文章搜索
國(guó)家 北京 天津 上海 重慶
河北 山西 遼寧 吉林 江蘇
浙江 安徽 福建 江西 山東
河南 湖北 湖南 廣東 廣西
海南 四川 貴州 云南 西藏
陜西 甘肅 寧夏 青海 新疆
黑龍江 內(nèi)蒙古 更多
中考欄目導(dǎo)航
版權(quán)聲明:如果中考網(wǎng)所轉(zhuǎn)載內(nèi)容不慎侵犯了您的權(quán)益,請(qǐng)與我們聯(lián)系800@exam8.com,我們將會(huì)及時(shí)處理。如轉(zhuǎn)載本中考網(wǎng)內(nèi)容,請(qǐng)注明出處。
領(lǐng)
免費(fèi)復(fù)習(xí)資料
最新中考資訊
文章責(zé)編:魏超杰