數(shù)學(xué)二 |
|
章節(jié) |
2007年大綱內(nèi)容 |
2008年大綱內(nèi)容 |
對比分析 |
高等數(shù)學(xué) |
第一章:函數(shù)、極限、連續(xù) |
考試內(nèi)容:函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關(guān)系的建立 數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限和右極限 無窮小量和無窮大量的概念及其關(guān)系 無窮小量的性質(zhì)及無窮小量的比較 極限的四則運算 極限存在的兩個準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個重要極限: , 函數(shù)連續(xù)的概念 函數(shù)間斷點的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì) 考試要求: 1. 理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應(yīng)用問題的函數(shù)關(guān)系 2. 了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性 3. 理解復(fù)合函數(shù)及分段函數(shù)的概念了解反函數(shù)及隱函數(shù)的概念 4. 掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念 5. 理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左、右極限之間的關(guān)系 6. 掌握極限的性質(zhì)及四則運算法則 7. 掌握極限存在的兩個準(zhǔn)則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法. 8. 理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限, 9. 理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型 10. 了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)一的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應(yīng)用這些性質(zhì). |
考試內(nèi)容:函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關(guān)系的建立 數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限和右極限 無窮小量和無窮大量的概念及其關(guān)系 無窮小量的性質(zhì)及無窮小量的比較 極限的四則運算 極限存在的兩個準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個重要極限: , 函數(shù)連續(xù)的概念 函數(shù)間斷點的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì) 考試要求: 1. 理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應(yīng)用問題的函數(shù)關(guān)系 2. 了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性 3. 理解復(fù)合函數(shù)及分段函數(shù)的概念了解反函數(shù)及隱函數(shù)的概念 4. 掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念 5. 理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左、右極限之間的關(guān)系 6. 掌握極限的性質(zhì)及四則運算法則 7. 掌握極限存在的兩個準(zhǔn)則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法. 8. 理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限, 9. 理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型 10. 了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)一的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應(yīng)用這些性質(zhì). |
對比:無變化 |
第二章:一元函數(shù)微分學(xué) |
考試內(nèi)容:導(dǎo)數(shù)和微分的概念 導(dǎo)數(shù)的幾何意義和物理意義 函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系 平面曲線的切線和法線 導(dǎo)數(shù)和微分的四則運算 基本初等函數(shù)的導(dǎo)數(shù) 復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法 高階導(dǎo)數(shù) 一階微分形式的不變性 微分中值定理 洛必達(dá)(L'Hospital)法則 函數(shù)單調(diào)性的判別 函數(shù)的極值 函數(shù)圖形的凹凸性、拐點及漸近線 函數(shù)圖形的描繪 函數(shù)的最大值和最小值 弧微分 曲率的概念 曲率的半徑 考試要求: 1. 理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)和微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系. 2. 掌握導(dǎo)數(shù)的四則運算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式.了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分 3. 了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù) 4. 會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù) 5. 理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西( Cauchy )中值定理 6. 掌握用洛必達(dá)法剛求未定式極限的方法. 7. 理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用. 8. 會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性,會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形. 9. 了解曲率和曲率半徑的概念,會計算曲率和曲率半徑. |
考試內(nèi)容:導(dǎo)數(shù)和微分的概念 導(dǎo)數(shù)的幾何意義和物理意義 函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系 平面曲線的切線和法線 導(dǎo)數(shù)和微分的四則運算 基本初等函數(shù)的導(dǎo)數(shù) 復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法 高階導(dǎo)數(shù) 一階微分形式的不變性 微分中值定理 洛必達(dá)(L'Hospital)法則 函數(shù)單調(diào)性的判別 函數(shù)的極值 函數(shù)圖形的凹凸性、拐點及漸近線 函數(shù)圖形的描繪 函數(shù)的最大值和最小值 弧微分 曲率的概念 曲率圓與曲率半徑 考試要求: 1. 理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)和微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系. 2. 掌握導(dǎo)數(shù)的四則運算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式.了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分 3. 了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù) 4. 會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù) 5. 理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西( Cauchy )中值定理 6. 掌握用洛必達(dá)法剛求未定式極限的方法. 7. 理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用. 8. 會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間(a,b)內(nèi),設(shè)函數(shù)f(x)具有二階導(dǎo)數(shù)。當(dāng) >0時,f(x)的圖形是凹的;當(dāng) <0時,f(x)的圖形是凸的),會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形. 9. 了解曲率、曲率圓和曲率半徑的概念,會計算曲率和曲率半徑. |
對比:1:多了一個對曲率圓概念了解 2:強調(diào)了圖形凹凸的官方說明 分析:1:部分考生只是背誦曲率半徑公式, 曲率中心的公式,但由這兩個“元素”確定的“曲率圓”本身沒有深刻認(rèn)識。 2:經(jīng)濟學(xué)和數(shù)學(xué)中,對于凹凸的定義確實是相反的。不同作者的定義可能說法不一致時造成混亂。其實凹凸在描述上是有方向的,高等數(shù)上是講向上凹或向上凸的,而我們的知覺就是凸嘛當(dāng)然是向上羅。
建議:1:對曲率圓的由來,曲率半徑,曲率中心要有形象的認(rèn)識及理論的推導(dǎo)能力,而不是簡單背兩個公式。 2: 不論來自何種專業(yè)背景的學(xué)生,按官方定義找一個自己能記住,不會混的方法即可。 |
第三章:一元函數(shù)積分學(xué) |
考試內(nèi)容 原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)及其導(dǎo)數(shù) 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分 反常(廣義)積分 定積分的應(yīng)用 考試要求 1. 理解原函數(shù)的概念,理解不定積分和定積分的概念 2. 掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法 3. 會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分 4. 理解積分上限的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓一萊布尼茨公式 5. 了解反常積分的概念,會計算反常積分 6. 掌握用定積分表達(dá)和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心等)及函數(shù)的平均值 |
考試內(nèi)容 原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)及其導(dǎo)數(shù) 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分 反常(廣義)積分 定積分的應(yīng)用 考試要求 1. 理解原函數(shù)的概念,理解不定積分和定積分的概念 2. 掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法 3. 會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分 4. 理解積分上限的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓一萊布尼茨公式 5. 了解反常積分的概念,會計算反常積分 6. 掌握用定積分表達(dá)和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的平均值 |
對比:對定積分應(yīng)用中多一個“形心”表述與計算的要求
分析:1、重心:物體的重力的合力作用點稱為物體的重心。(與組成該物體的物質(zhì)有關(guān)) 2、形心:物體的幾何中心。(只與物體的幾何形狀和尺寸有關(guān),與組成該物體的物質(zhì)無關(guān)) 3、一般情況下重心和形心是不重合的,只有物體是由同一種均質(zhì)材料構(gòu)成時,重心和形心才重合。 4、當(dāng)截面具有兩個對稱軸時,二者的交點就是該截面的形心。據(jù)此,可以很方便的確定圓形、圓環(huán)形、正方形的形心; 5、只有一個對稱軸的截面,其形心一定在其對稱軸上,具體在對稱軸上的哪一點,則需計算才能確定。 6、對于一些常見的簡單圖形,如圓形、矩形、三角形、正方形等,其形心都是熟知的,利用這些簡單圖形的形心,由疊加法即可確定由這些簡單圖形組成的組合圖形的 形心。
建議:注意形心與質(zhì)心的區(qū)別,理解幾何量與物理量的積分表達(dá)式 |
第四章:多元函數(shù)微積分學(xué) |
考試內(nèi)容 多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限與連續(xù)的概念 有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì) 多元函數(shù)的偏導(dǎo)數(shù)和全微分 多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法 二階偏導(dǎo)數(shù) 多元函數(shù)的極值和條件極值、最大值和最小值 二重積分的概念、基本性質(zhì)和計算 考試要求 1. 了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義 2. 了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì) 3. 了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會求全微分,了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導(dǎo)數(shù) 4. 了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并求解一些簡單的應(yīng)用題. 5. 了解二重積分的概念與基本性質(zhì),掌握二重積分(直角坐標(biāo)、極坐標(biāo))的計算方法 |
考試內(nèi)容 多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限與連續(xù)的概念 有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì) 多元函數(shù)的偏導(dǎo)數(shù)和全微分 多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法 二階偏導(dǎo)數(shù) 多元函數(shù)的極值和條件極值、最大值和最小值 二重積分的概念、基本性質(zhì)和計算 考試要求 1. 了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義 2. 了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì) 3. 了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會求全微分,了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導(dǎo)數(shù) 4. 了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并求解一些簡單的應(yīng)用題. 5. 了解二重積分的概念與基本性質(zhì),掌握二重積分(直角坐標(biāo)、極坐標(biāo))的計算方法 |
對比:無變化 |
第五章:常微分方程 |
考試內(nèi)容 常微分方程的基本概念 變量可分離的微分方程 齊次微分方程 一階線性微分方程 可降階的高階微分方程 線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理 二階常系數(shù)齊次線性微分方程 高于二階的某些常系數(shù)齊次線性微分方程 簡單的二階常系數(shù)非齊次線性微分方程 微分方程的簡單應(yīng)用 考試要求 1. 了解微分方程及其階、解、通解、初始條件和特解等概念 2. 掌握變量可分離的微分方程及一階線性微分方程的解法,會解齊次微分方程 3. 會用降階法解下列形式的微分方程: , 和 4. 理解二階線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理. 5. 掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程. 6. 會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程. 7. 會用微分方程解決一些簡單的應(yīng)用問題. |
考試內(nèi)容 常微分方程的基本概念 變量可分離的微分方程 齊次微分方程 一階線性微分方程 可降階的高階微分方程 線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理 二階常系數(shù)齊次線性微分方程 高于二階的某些常系數(shù)齊次線性微分方程 簡單的二階常系數(shù)非齊次線性微分方程 微分方程的簡單應(yīng)用 考試要求 1. 了解微分方程及其階、解、通解、初始條件和特解等概念 2. 掌握變量可分離的微分方程及一階線性微分方程的解法,會解齊次微分方程 3. 會用降階法解下列形式的微分方程: , 和 4. 理解二階線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理. 5. 掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程. 6. 會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程. 7. 會用微分方程解決一些簡單的應(yīng)用問題. |
對比:無變化 |
線性代數(shù) |
第一章:行列式 |
考試內(nèi)容 行列式的概念和基本性質(zhì) 行列式按行(列)展開定理 考試要求 1. 了解行列式的概念,掌握行列式的性質(zhì) 2. 會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式. |
考試內(nèi)容 行列式的概念和基本性質(zhì) 行列式按行(列)展開定理 考試要求 1. 了解行列式的概念,掌握行列式的性質(zhì) 2. 會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式. |
對比:無變化 |
第二章:矩陣 |
考試內(nèi)容 矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置 逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 考試要求 1. 理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣以及它們的性質(zhì). 2. 掌握矩陣的線性運算、乘法、轉(zhuǎn)置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì). 3. 理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣. 4. 了解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法. |
考試內(nèi)容 矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置 逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運算 考試要求 1. 理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣以及它們的性質(zhì). 2. 掌握矩陣的線性運算、乘法、轉(zhuǎn)置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì). 3. 理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣. 4. 了解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法. 5.了解分塊矩陣及其運算 |
對比:增加了一個知識點"分塊矩陣及其運算" 。
分析:因為數(shù)學(xué)1,3,4往年都要求了解這個知識點,說明對該知識點的要求數(shù)學(xué)1,2,3,4達(dá)到了一致,而且從07年考試來看,考試的內(nèi)容完全一致,另一方面說明對數(shù)學(xué)2的要求提高了。
建議:同學(xué)在復(fù)習(xí)時要認(rèn)真看一看增加的這個知識點。 |
第三章:向量 |
考試內(nèi)容 向量的概念 向量的線性組合和線性表示 向量組的線性相關(guān)和線性無關(guān) 向量組的極大線性無關(guān)組 等價的向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系 向量的內(nèi)積 線性無關(guān)向量組的的正交規(guī)范化方法 考試要求 1. 理解n維向量、向量的線性組合與線性表示的概念. 2. 理解向量組線性相關(guān)、線性無關(guān)的概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法 3. 了解向量組的極大線性無關(guān)組和向量組的秩的概念,會求向量組的極大線性無關(guān)組及秩. 4. 了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩之間的關(guān)系 5. 了解內(nèi)積的概念,掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法. |
考試內(nèi)容 向量的概念 向量的線性組合和線性表示 向量組的線性相關(guān)和線性無關(guān) 向量組的極大線性無關(guān)組 等價的向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系 向量的內(nèi)積 線性無關(guān)向量組的的正交規(guī)范化方法 考試要求 1. 理解n維向量、向量的線性組合與線性表示的概念. 2. 理解向量組線性相關(guān)、線性無關(guān)的概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法 3. 了解向量組的極大線性無關(guān)組和向量組的秩的概念,會求向量組的極大線性無關(guān)組及秩. 4. 了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩之間的關(guān)系 5. 了解內(nèi)積的概念,掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法. |
對比:無變化 |
第四章:線性方程組 |
考試內(nèi)容 線性方程組的克萊姆(Cramer)法則 齊次線性方程組有一非零解的充分必要條件 非齊次線性方程組有解的充分必要條件 線性方程組解的性質(zhì)和解的結(jié)構(gòu) 齊次線性方程組的基礎(chǔ)解系和通解 非齊次線性方程組的通解 考試要求 1. 會用克萊姆法則 2. 理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件 3. 理解齊次線性方程組的基礎(chǔ)解系、通解的概念,掌握齊次線性方程組基礎(chǔ)解系和通解的求法 4. 理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念. 5. 會用初等行變換求解線性方程組 |
考試內(nèi)容 線性方程組的克萊姆(Cramer)法則 齊次線性方程組有一非零解的充分必要條件 非齊次線性方程組有解的充分必要條件 線性方程組解的性質(zhì)和解的結(jié)構(gòu) 齊次線性方程組的基礎(chǔ)解系和通解 非齊次線性方程組的通解 考試要求 1. 會用克萊姆法則 2. 理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件 3. 理解齊次線性方程組的基礎(chǔ)解系、通解的概念,掌握齊次線性方程組基礎(chǔ)解系和通解的求法 4. 理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念. 5. 會用初等行變換求解線性方程組 |
對比:無變化 |
第五章:矩陣的特征值及特征向量 |
考試內(nèi)容 矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特征值、特征向量及其相似對角矩陣 考試要求 1. 理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法。 2. 理解矩陣相似的概念,掌握相似矩陣的性質(zhì),了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法。 3. 掌握實對稱矩陣的特征值和特征向量的性質(zhì)。 |
考試內(nèi)容 矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特征值、特征向量及其相似對角矩陣 考試要求 1. 理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法。 2. 理解矩陣相似的概念,掌握相似矩陣的性質(zhì),了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法。 3. 掌握實對稱矩陣的特征值和特征向量的性質(zhì)。 |
對比:無變化 |
第六章:二次型 |
考試內(nèi)容 二次型及其矩陣表示 合同變換和合同矩陣 二次型的秩 慣性定理 二次型的標(biāo)準(zhǔn)形和規(guī)范形 用正交變換和配方法化二次型為標(biāo)準(zhǔn)形 二次型及其矩陣的正定性 考試要求 1. 了解二次型的概念,會用矩陣形式表示二次型,了解合同變換和合同矩陣的概念。 2. 了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標(biāo)準(zhǔn)形。 3. 理解正定二次型、正定矩陣的概念,并掌握其判別法。 |
考試內(nèi)容 二次型及其矩陣表示 合同變換和合同矩陣 二次型的秩 慣性定理 二次型的標(biāo)準(zhǔn)形和規(guī)范形 用正交變換和配方法化二次型為標(biāo)準(zhǔn)形 二次型及其矩陣的正定性 考試要求 1. 了解二次型的概念,會用矩陣形式表示二次型,了解合同變換和合同矩陣的概念。 2. 了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標(biāo)準(zhǔn)形。 3. 理解正定二次型、正定矩陣的概念,并掌握其判別法。 |
對比:無變化 |