長按下面二維碼即可 |
長按下面二維碼即可 |
資料分析在行測考試中分值高、題量大,且在經(jīng)過認真的計算后可以保持穩(wěn)定的正答率,但是在速度和效率中間橫亙著的很難的一關(guān)——計算。今天就在這里給考生們整理了一些速算的技巧,希望大家注意練習使用。
速算技巧一:估算法
文都公考解析:“估算法”毫無疑問是資料分析題當中的速算第一法,在所有計算進行之前必須考慮能否先行估算。所謂估算,是在精度要求并不太高的情況下,進行粗略估值的速算方式,一般在選項相差較大,或者在被比較數(shù)據(jù)相差較大的情況下使用。估算的方式多樣,需要各位考生在實戰(zhàn)中多加訓練與掌握。
進行估算的前提是選項或者待比較的數(shù)字相差必須比較大,并且這個差別的大小決定了“估算”時候的精度要求。
速算技巧二:直除法
文都公考解析:直除法是指在比較或者計算較復雜分數(shù)時,通過“直接相除”的方式得到商的首位(首一位或首兩位),從而得出正確答案的速算方式!爸背ā痹谫Y料分析的速算當中有非常廣泛的用途,并且由于其“方式簡單”而具有“極易操作”性。
“直除法”從題型上一般包括兩種形式:
一、比較多個分數(shù)時,在量級相當?shù)那闆r下,首位最大/小的數(shù)為最大/小數(shù);
二、計算一個分數(shù)時,在選項首位不同的情況下,通過計算首位便可選出正確答案。
“直除法”從難度深淺上來講一般分為三種梯度:
一、簡單直接能看出商的首位;
二、通過動手計算能看出商的首位;
三、某些比較復雜的分數(shù),需要計算分數(shù)的“倒數(shù)”的首位來判定答案。
速算技巧三:截位法
文都公考解析:所謂“截位法”,是指“在精度允許的范圍內(nèi),將計算過程當中的數(shù)字截位(即只看或者只取前幾位),從而得到精度足夠的計算結(jié)果”的速算方式。在加法或者減法中使用“截位法”時,直接從左邊高位開始相加或者相減(同時注意下一位是否需要進位與錯位),知道得到選項要求精度的答案為止。在乘法或者除法中使用“截位法”時,為了使所得結(jié)果盡可能精確,需要注意截位近似的方向:
一、擴大(或縮小)一個乘數(shù)因子,則需縮小(或擴大)另一個乘數(shù)因子;
二、擴大(或縮小)被除數(shù),則需擴大(或縮小)除數(shù)。如果是求“兩個乘積的和或者差(即a*b+/-c*d),應該注意:
三、擴大(或縮小)加號的一側(cè),則需縮小(或擴大)加號的另一側(cè);
四、擴大(或縮小)減號的一側(cè),則需擴大(或縮小)減號的另一側(cè)。
到底采取哪個近似方向由相近程度和截位后計算難度決定。一般說來,在乘法或者除法中使用”截位法“時,若答案需要有N位精度,則計算過程的數(shù)據(jù)需要有N+1位的精度,但具體情況還得由截位時誤差的大小以及誤差的抵消情況來決定;在誤差較小的情況下,計算過程中的數(shù)據(jù)甚至可以不滿足上述截位方向的要求。所以應用這種方法時,需要考生在做題當中多加熟悉與訓練誤差的把握,在可以使用其它方式得到答案并且截位誤差可能很大時,盡量避免使用乘法與除法的截位法。
速算技巧五:差分法
文都公考解析:“差分法”是在比較兩個分數(shù)大小時,用“直除法”或者“化同法”等其他速算方式難以解決時可以采取的一種速算方式。
適用形式:
兩個分數(shù)作比較時,若其中一個分數(shù)的分子與分母都比另外一個分數(shù)的分子與分母分別僅僅大一點,這時候使用“直除法”、“化同法”經(jīng)常很難比較出大小關(guān)系,而使用“差分法”卻可以很好地解決這樣的問題。
基礎(chǔ)定義:
在滿足“適用形式”的兩個分數(shù)中,我們定義分子與分母都比較大的分數(shù)叫“大分數(shù)”,分子與分母都比較小的分數(shù)叫“小分數(shù)”,而這兩個分數(shù)的分子、分母分別做差得到的新的分數(shù)我們定義為“差分數(shù)”。例如:324/53.1與313/51.7比較大小,其中324/53.1就是“大分數(shù)”,313/51.7就是“小分數(shù)”,而324-313/53.1-51.7=11/1.4就是“差分數(shù)”。
“差分法”使用基本準則——“差分數(shù)”代替“大分數(shù)”與“小分數(shù)”作比較:
1、若差分數(shù)比小分數(shù)大,則大分數(shù)比小分數(shù)大;
2、若差分數(shù)比小分數(shù)小,則大分數(shù)比小分數(shù)小;
3、若差分數(shù)與小分數(shù)相等,則大分數(shù)與小分數(shù)相等。
比如上文中就是“11/1.4代替324/53.1與313/51.7作比較”,因為11/1.4>313/51.7(可以通過“直除法”或者“化同法”簡單得到),所以324/53.1>313/51.7。
特別注意:
一、“差分法”本身是一種“精算法”而非“估算法”,得出來的大小關(guān)系是精確的關(guān)系而非粗略的關(guān)系;
二、“差分法”與“化同法”經(jīng)常聯(lián)系在一起使用,“化同法緊接差分法”與“差分法緊接化同法”是資料分析速算當中經(jīng)常遇到的兩種情形。
三、“差分法”得到“差分數(shù)”與“小分數(shù)”做比較的時候,還經(jīng)常需要用到“直除法”。
四、如果兩個分數(shù)相隔非常近,我們甚至需要反復運用兩次“差分法”,這種情況相對比較復雜,但如果運用熟練,同樣可以大幅度簡化計算。
速算技巧六:湊整法
文都公考解析:“湊整法”是指在計算過程當中,將中間結(jié)果湊成一個“整數(shù)”(整百、整千等其它方便計算形式的數(shù)),從而簡化計算的速算方式!皽愓ā卑/減法的湊整,也包括乘/除法的湊整。
在資料分析的計算當中,真正意義上的完全湊成“整數(shù)”基本上是不可能的,但由于資料分析不要求絕對的精度,所以湊成與“整數(shù)”相近的數(shù)是資料分析“湊整法”所真正包括的主要內(nèi)容。
速算技巧七:綜合速算法
文都公考解析:“綜合速算法”包含了我們資料分析試題當中眾多體系性不如前面九大速算技巧的速算方式,但這些速算方式仍然是提高計算速度的有效手段。
平方數(shù)速算:
牢記常用平方數(shù),特別是11~30以內(nèi)數(shù)的平方,可以很好地提高計算速度:
121、144、169、196、225、256、289、324、361、400
441、484、529、576、625、676、729、784、841、900
尾數(shù)法速算:
因為資料分析試題當中牽涉到的數(shù)據(jù)幾乎都是通過近似后得到的結(jié)果,所以一般我們計算的時候多強調(diào)首位估算,而尾數(shù)往往是微不足道的。因此資料分析當中的尾數(shù)法只適用于未經(jīng)近似或者不需要近似的計算之中。歷史數(shù)據(jù)證明,國考試題資料分析基本上不能用到尾數(shù)法,但在地方考題的資料分析當中,尾數(shù)法仍然可以有效地簡化計算。
錯位相加/減:
A×9型速算技巧:
A×9=A×10-A;如:743×9=7430-743=6687
A×9.9型速算技巧:A×9.9=A×10+A÷10;如:7439.9=7430-74.3=7355.7
A×11型速算技巧:
A×11=A×10+A;如:743×11=7430+743=8173
A×101型速算技巧:A×101=A×100+A;如:743×101=74300+743=75043
乘/除以5、25、125的速算技巧:
A×5型速算技巧:A×5=10A÷2;A÷5型速算技巧:A÷5=0.1A×2
例8739.45×5=87394.5÷2=43697.25
36.843÷5=3.6843×2=7.3686
A× 25型速算技巧:
A×25=100A÷4;A÷ 25型速算技巧:A÷25=0.01A×4
例7234×25=723400÷4=180850
3714÷25=37.14×4=148.56
A×125型速算技巧:
A×125=1000A÷8;A÷125型速算技巧:A÷125=0.001A×8
例8736×125=8736000÷8=1092000
4115÷125=4.115×8=32.92
減半相加:
A×1.5型速算技巧:A×1.5=A+A÷2;
例3406×1.5=3406+3406÷2=3406+1703=5109
“首數(shù)相同尾數(shù)互補”型兩數(shù)乘積速算技巧:
積的頭=頭×(頭+1);積的尾=尾×尾
例:“23×27”,首數(shù)均為“2”,尾數(shù)“3”與“7”的和是“10”,互補
所以乘積的首數(shù)為2×(2+1)=6,尾數(shù)為3×7=21,即23×27=621
相關(guān)推薦: