各地中考
您現(xiàn)在的位置: 考試吧 > 2021中考 > 復(fù)習(xí)指導(dǎo) > 中考數(shù)學(xué) > 正文

2022年中考數(shù)學(xué)平面幾何60個定理

來源:考試吧 2021-9-17 20:20:11 要考試,上考試吧! 萬題庫
2022年中考數(shù)學(xué)平面幾何60個定理,更多2022中考備考資料、2022中考經(jīng)驗等信息,請訪問考試吧中考網(wǎng)或微信搜索“考試吧初高中”獲取。

  31、塞瓦定理的逆定理的應(yīng)用定理2:設(shè)△ABC的內(nèi)切圓和邊BC、CA、AB分別相切于點R、S、T,則AR、BS、CT交于一點。

  32、西摩松定理:從△ABC的外接圓上任意一點P向三邊BC、CA、AB或其延長線作垂線,設(shè)其垂足分別是D、E、R,則D、E、R共線,(這條直線叫西摩松線)

  33、西摩松定理的逆定理:(略)

  34、史坦納定理:設(shè)△ABC的垂心為H,其外接圓的任意點P,這時關(guān)于△ABC的點P的西摩松線通過線段PH的中心。

  35、史坦納定理的應(yīng)用定理:△ABC的外接圓上的一點P的關(guān)于邊BC、CA、AB的對稱點和△ABC的垂心H同在一條(與西摩松線平行的)直線上。這條直線被叫做點P關(guān)于△ABC的鏡象線。

  36、波朗杰、騰下定理:設(shè)△ABC的外接圓上的三點為P、Q、R,則P、Q、R關(guān)于△ABC交于一點的充要條件是:弧AP+弧BQ+弧CR=0(mod2∏)。

  37、波朗杰、騰下定理推論1:設(shè)P、Q、R為△ABC的外接圓上的三點,若P、Q、R關(guān)于△ABC的西摩松線交于一點,則A、B、C三點關(guān)于△PQR的的西摩松線交于與前相同的一點

  38、波朗杰、騰下定理推論2:在推論1中,三條西摩松線的交點是A、B、C、P、Q、R六點任取三點所作的三角形的垂心和其余三點所作的三角形的垂心的連線段的中點。

  39、波朗杰、騰下定理推論3:考查△ABC的外接圓上的一點P的關(guān)于△ABC的西摩松線,如設(shè)QR為垂直于這條西摩松線該外接圓珠筆的弦,則三點P、Q、R的關(guān)于△ABC的西摩松線交于一點

  40、波朗杰、騰下定理推論4:從△ABC的頂點向邊BC、CA、AB引垂線,設(shè)垂足分別是D、E、F,且設(shè)邊BC、CA、AB的中點分別是L、M、N,則D、E、F、L、M、N六點在同一個圓上,這時L、M、N點關(guān)于關(guān)于△ABC的西摩松線交于一點。

  41、關(guān)于西摩松線的定理1:△ABC的外接圓的兩個端點P、Q關(guān)于該三角形的西摩松線互相垂直,其交點在九點圓上。

  42、關(guān)于西摩松線的定理2(安寧定理):在一個圓周上有4點,以其中任三點作三角形,再作其余一點的關(guān)于該三角形的西摩松線,這些西摩松線交于一點。

  43、卡諾定理:通過△ABC的外接圓的一點P,引與△ABC的三邊BC、CA、AB分別成同向的等角的直線PD、PE、PF,與三邊的交點分別是D、E、F,則D、E、F三點共線。

  44、奧倍爾定理:通過△ABC的三個頂點引互相平行的三條直線,設(shè)它們與△ABC的外接圓的交點分別是L、M、N,在△ABC的外接圓取一點P,則PL、PM、PN與△ABC的三邊BC、CA、AB或其延長線的交點分別是D、E、F,則D、E、F三點共線

  45、清宮定理:設(shè)P、Q為△ABC的外接圓的異于A、B、C的兩點,P點的關(guān)于三邊BC、CA、AB的對稱點分別是U、V、W,這時,QU、QV、QW和邊BC、CA、AB或其延長線的交點分別是D、E、F,則D、E、F三點共線

  46、他拿定理:設(shè)P、Q為關(guān)于△ABC的外接圓的一對反點,點P的關(guān)于三邊BC、CA、AB的對稱點分別是U、V、W,這時,如果QU、QV、QW與邊BC、CA、AB或其延長線的交點分別為ED、E、F,則D、E、F三點共線。(反點:P、Q分別為圓O的半徑OC和其延長線的兩點,如果OC2=OQ×OP則稱P、Q兩點關(guān)于圓O互為反點)

  47、朗古來定理:在同一圓同上有A1B1C1D14點,以其中任三點作三角形,在圓周取一點P,作P點的關(guān)于這4個三角形的西摩松線,再從P向這4條西摩松線引垂線,則四個垂足在同一條直線上。

  48、九點圓定理:三角形三邊的中點,三高的垂足和三個歐拉點[連結(jié)三角形各頂點與垂心所得三線段的中點]九點共圓[通常稱這個圓為九點圓[nine-pointcircle],或歐拉圓,費爾巴哈圓。

  49、一個圓周上有n個點,從其中任意n-1個點的重心,向該圓周的在其余一點處的切線所引的垂線都交于一點。

  50、康托爾定理1:一個圓周上有n個點,從其中任意n-2個點的重心向余下兩點的連線所引的垂線共點。

  51、康托爾定理2:一個圓周上有A、B、C、D四點及M、N兩點,則M和N點關(guān)于四個三角形△BCD、△CDA、△DAB、△ABC中的每一個的兩條西摩松的交點在同一直線上。這條直線叫做M、N兩點關(guān)于四邊形ABCD的康托爾線。

  52、康托爾定理3:一個圓周上有A、B、C、D四點及M、N、L三點,則M、N兩點的關(guān)于四邊形ABCD的康托爾線、L、N兩點的關(guān)于四邊形ABCD的康托爾線、M、L兩點的關(guān)于四邊形ABCD的康托爾線交于一點。這個點叫做M、N、L三點關(guān)于四邊形ABCD的康托爾點。

  53、康托爾定理4:一個圓周上有A、B、C、D、E五點及M、N、L三點,則M、N、L三點關(guān)于四邊形BCDE、CDEA、DEAB、EABC中的每一個康托爾點在一條直線上。這條直線叫做M、N、L三點關(guān)于五邊形A、B、C、D、E的康托爾線。

  54、費爾巴赫定理:三角形的九點圓與內(nèi)切圓和旁切圓相切。

  55、莫利定理:將三角形的三個內(nèi)角三等分,靠近某邊的兩條三分角線相得到一個交點,則這樣的三個交點可以構(gòu)成一個正三角形。這個三角形常被稱作莫利正三角形。

  56、牛頓定理1:四邊形兩條對邊的延長線的交點所連線段的中點和兩條對角線的中點,三條共線。這條直線叫做這個四邊形的牛頓線。

  57、牛頓定理2:圓外切四邊形的兩條對角線的中點,及該圓的圓心,三點共線。

  58、笛沙格定理1:平面上有兩個三角形△ABC、△DEF,設(shè)它們的對應(yīng)頂點(A和D、B和E、C和F)的連線交于一點,這時如果對應(yīng)邊或其延長線相交,則這三個交點共線。

  59、笛沙格定理2:相異平面上有兩個三角形△ABC、△DEF,設(shè)它們的對應(yīng)頂點(A和D、B和E、C和F)的連線交于一點,這時如果對應(yīng)邊或其延長線相交,則這三個交點共線。

  60、布利安松定理:連結(jié)外切于圓的六邊形ABCDEF相對的頂點A和D、B和E、C和F,則這三線共點。

  61、巴斯加定理:圓內(nèi)接六邊形ABCDEF相對的邊AB和DE、BC和EF、CD和FA的(或延長線的)交點共線.

掃描/長按二維碼關(guān)注 助中考一臂之力!
獲取2022中考報名時間
獲取2022中考作文
獲取2套仿真內(nèi)部資料
獲取歷年考試真題試卷

微信搜索"考試吧初高中" 關(guān)注獲得中考資料

上一頁  1 2 

  相關(guān)推薦

  各地2022中考報名時間2022中考時間安排關(guān)注微信先報名

  2022中考報考指南中考報名方法中考報名條件

  2022中考大綱及解讀2022中考政策歷年真題及答案

文章搜索
國家 北京 天津 上海 重慶
河北 山西 遼寧 吉林 江蘇
浙江 安徽 福建 江西 山東
河南 湖北 湖南 廣東 廣西
海南 四川 貴州 云南 西藏
陜西 甘肅 寧夏 青海 新疆
黑龍江 內(nèi)蒙古 更多
中考欄目導(dǎo)航
版權(quán)聲明:如果中考網(wǎng)所轉(zhuǎn)載內(nèi)容不慎侵犯了您的權(quán)益,請與我們聯(lián)系800@exam8.com,我們將會及時處理。如轉(zhuǎn)載本中考網(wǎng)內(nèi)容,請注明出處。
領(lǐng)
免費復(fù)習(xí)資料
最新中考資訊
文章責(zé)編:wuxiaojuan825