二、了解幾個(gè)重要的數(shù)學(xué)思想
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運(yùn)動(dòng)中,路程、速度和時(shí)間三者之間就有一種等量關(guān)系,可以建立一個(gè)相關(guān)等式:速度×?xí)r間=路程,在這樣的等式中,一般會(huì)有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們?cè)谛W(xué)就已經(jīng)接觸過簡(jiǎn)易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個(gè)步驟。如果學(xué)會(huì)并掌握了這五個(gè)步驟,
任何一個(gè)一元一次方程都能順利地解出來。初二和初三我們學(xué)習(xí)了解一元二次方程、二元二次方程組、簡(jiǎn)單的三角方程;到了高中我們還將學(xué)習(xí)指數(shù)方程、對(duì)數(shù)方程、線性方程組、參數(shù)方程、極坐標(biāo)方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個(gè)步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實(shí)中的大量實(shí)際應(yīng)用,都需要建立方程,通過解方程來求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而為學(xué)好其它形式的方程打好基礎(chǔ)。
所謂的“方程”思想就是對(duì)于數(shù)學(xué)問題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯(cuò)綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
大千世界,“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個(gè)屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個(gè)分支——代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢(shì),越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標(biāo)系后,研究函數(shù)的問題就離不開圖象了。往往借助圖象能使問題明朗化,比較容易找到問題的關(guān)鍵所在,從而解決問題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的思維訓(xùn)練,任何一道題,只要與“形”沾得上一點(diǎn)邊,就應(yīng)該根據(jù)題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強(qiáng),容易找出切入點(diǎn),對(duì)解題大有益處。嘗到甜頭的人慢慢會(huì)養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。
3、“對(duì)應(yīng)”的思想
“對(duì)應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對(duì)應(yīng)一個(gè)抽象的數(shù)“1”,將兩只眼睛、一對(duì)耳環(huán)、雙胞胎對(duì)應(yīng)一個(gè)抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對(duì)應(yīng)”擴(kuò)展到對(duì)應(yīng)一種形式,對(duì)應(yīng)一種關(guān)系,等等。比如我們?cè)诨?jiǎn)求值計(jì)算中,將式子中有關(guān)字母或某個(gè)整體的值,對(duì)應(yīng)代入,直接算出原式的結(jié)果。又比如我們到初三綜合學(xué)習(xí)了與圓有關(guān)的角,圓心角、圓周角、弦切角的數(shù)量關(guān)系必須“對(duì)應(yīng)”同一段弧才能成立。這就是運(yùn)用“對(duì)應(yīng)”的思想和方法來解題。初二、初三我們還看到數(shù)軸上的點(diǎn)與實(shí)數(shù)之間的一一對(duì)應(yīng),直角坐標(biāo)平面上的點(diǎn)與一對(duì)有序?qū)崝?shù)之間的一一對(duì)應(yīng),函數(shù)與其圖象之間的對(duì)應(yīng)。總之,“對(duì)應(yīng)”的思想在今后的學(xué)習(xí)中將會(huì)發(fā)揮越來越大的作用。
4、“轉(zhuǎn)化”的思想
解數(shù)學(xué)題最根本的途徑是“化難為易,化繁為簡(jiǎn),化未知為已知”,也就是把復(fù)雜繁難的數(shù)學(xué)問題通過一定的數(shù)學(xué)思維、方法和手段,逐漸將它轉(zhuǎn)變成一個(gè)大家熟知的簡(jiǎn)單的數(shù)學(xué)形式,然后通過大家所熟悉的數(shù)學(xué)運(yùn)算把它解決。
比如,我們學(xué)校要擴(kuò)大校園,需要向某村征地。而某村給了一塊形狀不規(guī)則的地,如何丈量它的面積呢?首先,使用適當(dāng)?shù)臏y(cè)量工具,依據(jù)一定的比例,將實(shí)際地形繪制成紙上圖形,然后將紙上圖形分割成若干塊梯形、長(zhǎng)方形、三角形,利用學(xué)過的面積計(jì)算方法,計(jì)算出這些圖形的面積之和,也就得到了這塊不規(guī)則地形的總面積。在這里,我們把無法計(jì)算的不規(guī)則圖形轉(zhuǎn)化成了可以計(jì)算的規(guī)則圖形,從而解決了土地丈量問題。另外,我們前面提到的各種多元方程、高次方程,利用“消元”、“降次”等方法,最終都可以把它們轉(zhuǎn)化成一元一次方程或一元二次方程,然后用已知的步驟或公式把它們解決。
“轉(zhuǎn)化和替代”的思想,是解題的最重要的思維習(xí)慣。面對(duì)難題,面對(duì)沒有見過的題,首先就要想到“轉(zhuǎn)化”,也總是能夠“轉(zhuǎn)化”的。平時(shí),要多留心老師是怎樣解題的,是怎樣“化難為易、化繁為簡(jiǎn)、化未知為已知”的。同學(xué)之間也應(yīng)多交流交流“成功轉(zhuǎn)化”的體會(huì),深入理解“轉(zhuǎn)化”的真正含義,切實(shí)掌握“轉(zhuǎn)化”的思維和技巧。
編輯推薦:
·2021年中考數(shù)學(xué)知識(shí)點(diǎn)及考點(diǎn)匯總 (2021-4-28 11:34:37)
·2021年中考數(shù)學(xué)一次不等式組知識(shí)點(diǎn)總結(jié) (2021-4-28 11:33:25)
·2021年中考數(shù)學(xué)平面直角坐標(biāo)與函數(shù)知識(shí)點(diǎn)總結(jié) (2021-4-28 11:32:16)
·2021年中考數(shù)學(xué)一次函數(shù)的圖像及性質(zhì)知識(shí)點(diǎn)總結(jié) (2021-4-28 11:30:43)
·2021年中考數(shù)學(xué)二次函數(shù)的圖像及性質(zhì)知識(shí)點(diǎn)總結(jié) (2021-4-28 11:28:38)
2022年海南中考地理真題及答案已公布
2022年海南中考生物真題及答案已公布
2022年海南中考?xì)v史真題及答案已公布
2022年海南中考政治真題及答案已公布
2022年海南中考化學(xué)真題及答案已公布
2022年海南中考物理真題及答案已公布
2022年海南中考英語真題及答案已公布
2022年海南中考數(shù)學(xué)真題及答案已公布
2022年海南中考語文真題及答案已公布
2022年福建漳州中考成績(jī)查詢?nèi)肟谝验_通
2022廣東汕尾中考成績(jī)7月13日公布
2022年黑龍江齊齊哈爾中考成績(jī)查詢?nèi)肟谝?/a>
2022年黑龍江哈爾濱中考成績(jī)查詢?nèi)肟谝验_
2022年安徽亳州中考成績(jī)7月2日公布
2022年安徽銅陵中考成績(jī)查詢?nèi)肟谝验_通 點(diǎn)
2022年福建廈門中考成績(jī)查詢?nèi)肟谝验_通 點(diǎn)
2022寧夏銀川中考成績(jī)查詢?nèi)肟谝验_通 點(diǎn)擊
2022年吉安市中考成績(jī)查詢?nèi)肟谝验_通 點(diǎn)擊
國家 | 北京 | 天津 | 上海 | 重慶 |
河北 | 山西 | 遼寧 | 吉林 | 江蘇 |
浙江 | 安徽 | 福建 | 江西 | 山東 |
河南 | 湖北 | 湖南 | 廣東 | 廣西 |
海南 | 四川 | 貴州 | 云南 | 西藏 |
陜西 | 甘肅 | 寧夏 | 青海 | 新疆 |
黑龍江 | 內(nèi)蒙古 | 更多 |
·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽 ·經(jīng)濟(jì)師考試培訓(xùn) 試聽
·執(zhí)業(yè)藥師考試培訓(xùn) 試聽 ·報(bào)關(guān)員考試培訓(xùn) 試聽
·銀行從業(yè)考試培訓(xùn) 試聽 ·會(huì)計(jì)證考試培訓(xùn) 試聽
·證券從業(yè)考試培訓(xùn) 試聽 ·華圖公務(wù)員培訓(xùn) 試聽
·二級(jí)建造師考試培訓(xùn) 試聽 ·公務(wù)員培訓(xùn) 網(wǎng)校 試聽
·一級(jí)建造師考試培訓(xùn) 試聽 ·結(jié)構(gòu)師考試培訓(xùn) 試聽
·注冊(cè)建筑師考試培訓(xùn) 試聽 ·造價(jià)師考試培訓(xùn) 試聽
·質(zhì)量資格考試培訓(xùn) 試聽 ·咨詢師考試培訓(xùn) 試聽
·衛(wèi)生職稱考試培訓(xùn) 試聽 ·監(jiān)理師考試培訓(xùn) 試聽
·報(bào)關(guān)員考試培訓(xùn) 試聽 ·經(jīng)濟(jì)師考試培訓(xùn) 試聽
·銀行從業(yè)考試培訓(xùn) 試聽 ·會(huì)計(jì)證考試培訓(xùn) 試聽
·證券從業(yè)考試培訓(xùn) 試聽 ·注冊(cè)會(huì)計(jì)師培訓(xùn) 試聽
·期貨從業(yè)考試培訓(xùn) 試聽 ·統(tǒng)計(jì)師考試培訓(xùn) 試聽
·國際商務(wù)師考試培訓(xùn) 試聽 ·稅務(wù)師考試培訓(xùn) 試聽
·人力資源師考試培訓(xùn) 試聽 ·評(píng)估師考試培訓(xùn) 試聽
·管理咨詢師考試培訓(xùn) 試聽 ·審計(jì)師考試培訓(xùn) 試聽
·報(bào)檢員考試培訓(xùn) 試聽 ·高級(jí)會(huì)計(jì)師考試培訓(xùn) 試聽
·外銷員考試培訓(xùn) 試聽 ·公務(wù)員 試聽 教育門戶
·二級(jí)建造師考試培訓(xùn) 試聽 ·招標(biāo)師考試培訓(xùn) 試聽
·造價(jià)師考試培訓(xùn) 試聽 ·物業(yè)管理師考試培訓(xùn) 試聽
·監(jiān)理師考試培訓(xùn) 試聽 ·設(shè)備監(jiān)理師考試培訓(xùn) 試聽
·安全師考試培訓(xùn) 試聽 ·巖土工程師考試培訓(xùn) 試聽
·咨詢師考試培訓(xùn) 試聽 ·投資項(xiàng)目管理師培訓(xùn) 試聽
·結(jié)構(gòu)師考試培訓(xùn) 試聽 ·公路監(jiān)理師考試培訓(xùn) 試聽
·建筑師考試培訓(xùn) 試聽 ·衛(wèi)生資格考試培訓(xùn) 試聽
·質(zhì)量資格考試培訓(xùn) 試聽 ·執(zhí)業(yè)藥師考試培訓(xùn) 試聽
·造價(jià)員考試培訓(xùn) 試聽 ·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽