各地中考
您現(xiàn)在的位置: 考試吧 > 2021中考 > 復習指導 > 中考數(shù)學 > 正文

2010年中考數(shù)學總復習:二元一次方程組(1)

  ★重點★一元一次、一元二次方程,二元一次方程組的解法;方程的有關應用題(特別是行程、工程問題)

   內(nèi)容提要

  一、 基本概念

  1。方程、方程的解(根)、方程組的解、解方程(組)

  2. 分類:

  二、 解方程的依據(jù)—等式性質(zhì)

  1.a=b←→a+c=b+c

  2.a=b←→ac=bc (c≠0)

  三、 解法

  1。一元一次方程的解法:去分母→去括號→移項→合并同類項→

  系數(shù)化成1→解。

  2. 元一次方程組的解法:⑴基本思想:“消元”⑵方法:①代入法

 、诩訙p法

  四、 一元二次方程

  1。定義及一般形式:

  2。解法:⑴直接開平方法(注意特征)

 、婆浞椒(注意步驟—推倒求根公式)

  ⑶公式法:

 、纫蚴椒纸夥(特征:左邊=0)

  3。根的判別式:

  4。根與系數(shù)頂?shù)年P系:

  逆定理:若,則以 為根的一元二次方程是: 。

    |||

  五、 可化為一元二次方程的方程

  1。分式方程

 、哦x

  ⑵基本思想:

 、腔窘夥ǎ孩偃シ帜阜á趽Q元法(如, )

 、闰灨胺椒

  2。無理方程

 、哦x

 、苹舅枷耄

 、腔窘夥ǎ孩俪朔椒(注意技巧!!)②換元法(例, )⑷驗根及方法

  3。簡單的二元二次方程組

  由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。

  六、 列方程(組)解應用題

  一概述

  列方程(組)解應用題是中學數(shù)學聯(lián)系實際的一個重要方面。其具體步驟是:

 、艑忣}。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關系是什么。

 、圃O元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。

 、怯煤粗獢(shù)的代數(shù)式表示相關的量。

  ⑷尋找相等關系(有的由題目給出,有的由該問題所涉及的等量關系給出),列方程。一般地,未知數(shù)個數(shù)與方程個數(shù)是相同的。

 、山夥匠碳皺z驗。

 、蚀鸢浮

  綜上所述,列方程(組)解應用題實質(zhì)是先把實際問題轉化為數(shù)學問題(設元、列方程),在由數(shù)學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應用題的關鍵。      |||

  二 常用的相等關系

  1. 行程問題(勻速運動)

  基本關系:s=vt

  ⑴相遇問題(同時出發(fā)):

  + = ;

 、谱芳皢栴}(同時出發(fā)):

  若甲出發(fā)t小時后,乙才出發(fā),而后在B處追上甲,則

  ⑶水中航行: ;

  2. 配料問題:溶質(zhì)=溶液濃度

  溶液=溶質(zhì)+溶劑

  3。增長率問題:

  4。工程問題:基本關系:工作量=工作效率工作時間(常把工作量看著單位“1”)。

  5。幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關比例性質(zhì)等。

  三注意語言與解析式的互化

  如,“多”、“少”、“增加了”、“增加為(到)”、“同時”、“擴大為(到)”、“擴大了”、……

  又如,一個三位數(shù),百位數(shù)字為a,十位數(shù)字為b,個位數(shù)字為c,則這個三位數(shù)為:100a+10b+c,而不是abc。

  四注意從語言敘述中寫出相等關系。

  如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算

  如,“小時”“分鐘”的換算;s、v、t單位的一致等。

     
文章搜索
國家 北京 天津 上海 重慶
河北 山西 遼寧 吉林 江蘇
浙江 安徽 福建 江西 山東
河南 湖北 湖南 廣東 廣西
海南 四川 貴州 云南 西藏
陜西 甘肅 寧夏 青海 新疆
黑龍江 內(nèi)蒙古 更多
中考欄目導航
版權聲明:如果中考網(wǎng)所轉載內(nèi)容不慎侵犯了您的權益,請與我們聯(lián)系800@exam8.com,我們將會及時處理。如轉載本中考網(wǎng)內(nèi)容,請注明出處。
免費復習資料
最新中考資訊
文章責編:liujun1987