各地中考
您現(xiàn)在的位置: 考試吧 > 2021中考 > 復(fù)習(xí)指導(dǎo) > 中考數(shù)學(xué) > 正文
  一、數(shù)學(xué)直覺概念的界定
  簡(jiǎn)單的說,數(shù)學(xué)直覺是具有意識(shí)的人腦對(duì)數(shù)學(xué)對(duì)象(結(jié)構(gòu)及其關(guān)系)的某種直接的領(lǐng)悟和洞察。
  對(duì)于直覺作以下說明:
  (1)直覺與直觀、直感的區(qū)別
  直觀與直感都是以真實(shí)的事物為對(duì)象,通過各種感覺器官直接獲得的感覺或感知。例如等腰三角形的兩個(gè)底角相等,兩個(gè)角相等的三角形是等腰三角形等概念、性質(zhì)的界定并沒有一個(gè)嚴(yán)格的證明,只是一種直觀形象的感知。而直覺的研究對(duì)象則是抽象的數(shù)學(xué)結(jié)構(gòu)及其關(guān)系。龐加萊說:直覺不必建立在感覺明白之上.感覺不久便會(huì)變的無能為力。例如,我們?nèi)詿o法想象千角形,但我們能夠通過直覺一般地思考多角形,多角形把千角形作為一個(gè)特例包括進(jìn)來。由此可見直覺是一種深層次的心理活動(dòng),沒有具體的直觀形象和可操作的邏輯順序作思考的背景。正如迪瓦多內(nèi)所說:這些富有創(chuàng)造性的科學(xué)家與眾不同的地方,在于他們對(duì)研究的對(duì)象有一個(gè)活全生的構(gòu)想和深刻的了解,這些構(gòu)想和了解結(jié)合起來,就是所謂‘直覺‘……,因?yàn)樗m用的對(duì)象,一般說來,在我們的感官世界中是看不見的。
  (2)直覺與邏輯的關(guān)系
  從思維方式上來看,思維可以分為邏輯思維和直覺思維。長(zhǎng)期以來人們刻意的把兩者分離開來,其實(shí)這是一種誤解,邏輯思維與直覺思維從來就不是割離的。有一種觀點(diǎn)認(rèn)為邏輯重于演繹,而直觀重于分析,從側(cè)重角度來看,此話不無道理,但側(cè)重并不等于完全,數(shù)學(xué)邏輯中是否會(huì)有直覺成分?數(shù)學(xué)直覺是否具有邏輯性?比如在日常生活中有許多說不清道不明的東西,人們對(duì)各種事件作出判斷與猜想離不開直覺,甚至可以說直覺無時(shí)無刻不在起作用。數(shù)學(xué)也是對(duì)客觀世界的反映,它是人們對(duì)生活現(xiàn)象與世界運(yùn)行的秩序直覺的體現(xiàn),再以數(shù)學(xué)的形式將思考的理性過程格式化。數(shù)學(xué)最初的概念都是基于直覺,數(shù)學(xué)在一定程度上就是在問題解決中得到發(fā)展的,問題解決也離不開直覺,下面我們就以數(shù)學(xué)問題的證明為例,來考察直覺在證明過程中所起的作用。
  一個(gè)數(shù)學(xué)證明可以分解為許多基本運(yùn)算或許多演繹推理元素,一個(gè)成功的數(shù)學(xué)證明是這些基本運(yùn)算或演繹推理元素的一個(gè)成功的組合,仿佛是一條從出發(fā)點(diǎn)到目的地的通道,一個(gè)個(gè)基本運(yùn)算和演繹推理元素就是這條通道的一個(gè)個(gè)路段,當(dāng)一個(gè)成功的證明擺在我們面前開始,邏輯可以幫助我們確信沿著這條路必定能順利的到達(dá)目的地,但是邏輯卻不能告訴我們,為什么這些路徑的選取與這樣的組合可以構(gòu)成一條通道。事實(shí)上,出發(fā)不久就會(huì)遇上叉路口,也就是遇上了正確選擇構(gòu)成通道的路段的問題。龐加萊認(rèn)為,即使能復(fù)寫出一個(gè)成功的數(shù)學(xué)證明,但不知道是什么東西造成了證明的一致性,……,這些元素安置的順序比元素本身更加重要。笛卡爾認(rèn)為在數(shù)學(xué)推理中的每一步,直覺力都是不可缺少的。就好似我們平時(shí)打籃球,要靠球感一樣,在快速運(yùn)動(dòng)中來不及去作邏輯判斷,動(dòng)作只是下意識(shí)的,而下意識(shí)的動(dòng)作正是在平時(shí)訓(xùn)練產(chǎn)生的一種直覺。
  在教育過程中,老師由于把證明過程過分的嚴(yán)格化、程序化。學(xué)生只是見到一具僵硬的邏輯外殼,直覺的光環(huán)被掩蓋住了,而把成功往往歸功于邏輯的功勞,對(duì)自己的直覺反而不覺得。學(xué)生的內(nèi)在潛能沒有被激發(fā)出來,學(xué)習(xí)的興趣沒有被調(diào)動(dòng)起來,得不到思維的真正樂趣!丁吩鴪(bào)道,約30%的初中生學(xué)習(xí)了平面幾何推理之后,喪失了對(duì)數(shù)學(xué)學(xué)習(xí)的興趣,這種現(xiàn)象應(yīng)該引起數(shù)學(xué)教育者的重視與反思。
  二、直覺思維的主要特點(diǎn)
  直覺思維具有自由性、靈活性、自發(fā)性、偶然性、不可靠性等特點(diǎn),從培養(yǎng)直覺思維的必要性來看,筆者以為直覺思維有以下三個(gè)主要特點(diǎn):
  (1)簡(jiǎn)約性
  直覺思維是對(duì)思維對(duì)象從整體上考察,調(diào)動(dòng)自己的全部知識(shí)經(jīng)驗(yàn),通過豐富的想象作出的敏銳而迅速的假設(shè),猜想或判斷,它省去了一步一步分析推理的中間環(huán)節(jié),而采取了跳躍式的形式。它是一瞬間的思維火花,是長(zhǎng)期積累上的一種升華,是思維者的靈感和頓悟,是思維過程的高度簡(jiǎn)化,但是它卻清晰的觸及到事物的本質(zhì)。
  (2)創(chuàng)造性
  現(xiàn)代社會(huì)需要?jiǎng)?chuàng)造性的人才,我國(guó)的教材由于長(zhǎng)期以來借鑒國(guó)外的經(jīng)驗(yàn),過多的注重培養(yǎng)邏輯思維,培養(yǎng)的人才多數(shù)習(xí)慣于按部就班、墨守成規(guī),缺乏創(chuàng)造能力和開拓精神。直覺思維是基于研究對(duì)象整體上的把握,不專意于細(xì)節(jié)的推敲,是思維的大手筆。正是由于思維的無意識(shí)性,它的想象才是豐富的,發(fā)散的,使人的認(rèn)知結(jié)構(gòu)向外無限擴(kuò)展,因而具有反常規(guī)律的獨(dú)創(chuàng)性。
  伊恩.斯圖加特說:直覺是真正的數(shù)學(xué)家賴以生存的東西,許多重大的發(fā)現(xiàn)都是基于直覺。歐幾里得幾何學(xué)的五個(gè)公設(shè)都是基于直覺,從而建立起歐幾里得幾何學(xué)這棟輝煌的大廈;哈密頓在散步的路上進(jìn)發(fā)了構(gòu)造四元素的火花;阿基米德在浴室里找到了辨別王冠真假的方法;凱庫勒發(fā)現(xiàn)苯分了環(huán)狀結(jié)構(gòu)更是一個(gè)直覺思維的成功典范。
  (3)自信力
  學(xué)生對(duì)數(shù)學(xué)產(chǎn)生興趣的原因有兩種,一種是教師的人格魅力,其二是來自數(shù)學(xué)本身的魅力。不可否認(rèn)情感的重要作用,但筆者的觀點(diǎn)是,興趣來自數(shù)學(xué)本身。成功可以培養(yǎng)一個(gè)人的自信,直覺發(fā)現(xiàn)伴隨著很強(qiáng)的自信心。相比其它的物資獎(jiǎng)勵(lì)和情感激勵(lì),這種自信更穩(wěn)定、更持久。當(dāng)一個(gè)問題不用通過邏輯證明的形式而是通過自己的直覺獲得,那么成功帶給他的震撼是巨大的,內(nèi)心將會(huì)產(chǎn)生一種強(qiáng)大的學(xué)習(xí)鉆研動(dòng)力,從而更加相信自己的能力。
  高斯在小學(xué)時(shí)就能解決問題1+2+ …… +99+100=?,這是基于他對(duì)數(shù)的敏感性的超常把握,這對(duì)他一生的成功產(chǎn)生了不可磨滅的影響。而現(xiàn)在的中學(xué)生極少具有直覺意識(shí),對(duì)有限的直覺也半信半疑,不能從整體上駕馭問題,也就無法形成自信。
  三、直覺思維的培養(yǎng)
  一個(gè)人的數(shù)學(xué)思維,判斷能力的高低主要取決于直覺思維能力的高低。徐利治教授指出:數(shù)學(xué)直覺是可以后天培養(yǎng)的,實(shí)際上每個(gè)人的數(shù)學(xué)直覺也是不斷提高的。數(shù)學(xué)直覺是可以通過訓(xùn)練提高的。
  (!)扎實(shí)的基礎(chǔ)是產(chǎn)生直覺的源泉
  直覺不是靠機(jī)遇,直覺的獲得雖然具有偶然性,但決不是無緣無故的憑空臆想,而是以扎實(shí)的知識(shí)為基礎(chǔ)。若沒有深厚的功底,是不會(huì)進(jìn)發(fā)出思維的火花的。阿提雅說:一旦你真正感到弄懂一樣?xùn)|西,而且你通過大量例子以及通過與其它東兩的聯(lián)系取得了處理那個(gè)問題的足夠多的經(jīng)驗(yàn).對(duì)此你就會(huì)產(chǎn)生一種關(guān)于正在發(fā)展的過程是怎么回事以及什么結(jié)論應(yīng)該是正確的直覺。阿達(dá)瑪曾風(fēng)趣的說:難道一只猴了也能應(yīng)機(jī)遇而打印成整部美國(guó)憲法嗎?
  (2)滲透數(shù)學(xué)的哲學(xué)觀點(diǎn)及審美觀念
  直覺的產(chǎn)生是基于對(duì)研究對(duì)象整體的把握,而哲學(xué)觀點(diǎn)有利于高屋建鄰的把握事物的本質(zhì)。這些哲學(xué)觀點(diǎn)包括數(shù)學(xué)中普遍存在的對(duì)立統(tǒng)一、運(yùn)動(dòng)變化、相互轉(zhuǎn)化、對(duì)稱性等。例如(a+b)2= a2+2ab-b2 ,即使沒有學(xué)過完全平方公式,也可以運(yùn)用對(duì)稱的觀點(diǎn)判斷結(jié)論的真?zhèn)巍?
  美感和美的意識(shí)是數(shù)學(xué)直覺的本質(zhì),提高審美能力有利于培養(yǎng)數(shù)學(xué)事物間所有存在著的和諧關(guān)系及秩序的直覺意識(shí),審美能力越強(qiáng),則數(shù)學(xué)直覺能力也越強(qiáng)。狄拉克于1931年從數(shù)學(xué)對(duì)稱的角度考慮,大膽的提出了反物質(zhì)的假說,他認(rèn)為真空中的反電子就是正電子。他還對(duì)麥克斯韋方程組提出質(zhì)疑,他曾經(jīng)說,如果一個(gè)物理方程在數(shù)學(xué)上看上去不美,那么這個(gè)方程的正確性是可疑的。
  (3)重視解題教學(xué)
  教學(xué)中選擇適當(dāng)?shù)念}目類型,有利于培養(yǎng),考察學(xué)生的直覺思維。
  例如選擇題,由于只要求從四個(gè)選擇支中挑選出來,省略解題過程,容許合理的猜想,有利于直覺思維的發(fā)展。實(shí)施開放性問題教學(xué),也是培養(yǎng)直覺思維的有效方法。開放性問題的條件或結(jié)論不夠明確,可以從多個(gè)角度由果尋因,由因索果,提出猜想,由于答案的發(fā)散性,有利于直覺思維能力的培養(yǎng)。
  (4)設(shè)置直覺思維的意境和動(dòng)機(jī)誘導(dǎo)
  這就要求教師轉(zhuǎn)變教學(xué)觀念,把主動(dòng)權(quán)還給學(xué)生。對(duì)于學(xué)生的大膽設(shè)想給予充分肯定,對(duì)其合理成分及時(shí)給予鼓勵(lì),愛護(hù)、扶植學(xué)生的自發(fā)性直覺思維,以免挫傷學(xué)生直覺思維的積極性和學(xué)生直覺思維的悟性。教師應(yīng)及時(shí)因勢(shì)利導(dǎo),解除學(xué)生心中的疑惑,使學(xué)生對(duì)自己的直覺產(chǎn)生成功的喜悅感。
  跟著感覺走是教師經(jīng)常講的一句話,其實(shí)這句話里已蘊(yùn)涵著直覺思維的萌芽,只不過沒有把它上升為一種思維觀念。教師應(yīng)該把直覺思維冠冕堂皇的在課堂教學(xué)中明確的提出,制定相應(yīng)的活動(dòng)策略,從整體上分析問題的特征;重視數(shù)學(xué)思維方法的教學(xué),諸如:換元、數(shù)形結(jié)合、歸納猜想、反證法等,對(duì)滲透直覺觀念與思維能力的發(fā)展大有稗益。
  直覺思維與邏輯思維同等重要,偏離任何一方都會(huì)制約一個(gè)人思維能力的發(fā)展,伊思.斯圖爾特曾經(jīng)說過這樣一句話,數(shù)學(xué)的全部力量就在于直覺和嚴(yán)格性巧妙的結(jié)合在一起,受控制的精神和富有靈感的邏輯。受控制的精神和富有美感的邏輯正是數(shù)學(xué)的魅力所在,也是數(shù)學(xué)教育者努力的方向。
文章搜索
國(guó)家 北京 天津 上海 重慶
河北 山西 遼寧 吉林 江蘇
浙江 安徽 福建 江西 山東
河南 湖北 湖南 廣東 廣西
海南 四川 貴州 云南 西藏
陜西 甘肅 寧夏 青海 新疆
黑龍江 內(nèi)蒙古 更多
中考欄目導(dǎo)航
版權(quán)聲明:如果中考網(wǎng)所轉(zhuǎn)載內(nèi)容不慎侵犯了您的權(quán)益,請(qǐng)與我們聯(lián)系800@exam8.com,我們將會(huì)及時(shí)處理。如轉(zhuǎn)載本中考網(wǎng)內(nèi)容,請(qǐng)注明出處。
領(lǐng)
免費(fèi)復(fù)習(xí)資料
最新中考資訊
文章責(zé)編:liujun1987