2011年中招考試:《初中數(shù)學(xué)》競(jìng)賽講座(23)
(二)重要結(jié)論
1.個(gè)位數(shù)是2,3,7,8的整數(shù)一定不是完全平方數(shù);
2.個(gè)位數(shù)和十位數(shù)都是奇數(shù)的整數(shù)一定不是完全平方數(shù);
3.個(gè)位數(shù)是6,十位數(shù)是偶數(shù)的整數(shù)一定不是完全平方數(shù);
4.形如3n+2型的整數(shù)一定不是完全平方數(shù);
5.形如4n+2和4n+3型的整數(shù)一定不是完全平方數(shù);
6.形如5n±2型的整數(shù)一定不是完全平方數(shù);
7.形如8n+2, 8n+3, 8n+5, 8n+6,8n+7型的整數(shù)一定不是完全平方數(shù);
8.數(shù)字和是2,3,5,6,8的整數(shù)一定不是完全平方數(shù)。
(三)范例
[例1]:一個(gè)自然數(shù)減去45及加上44都仍是完全平方數(shù),求此數(shù)。
解:設(shè)此自然數(shù)為x,依題意可得
(m,n為自然數(shù))
(2)-(1)可得
∴n>m
(
但89為質(zhì)數(shù),它的正因子只能是1與89,于是。解之,得n=45。代入(2)得。故所求的自然數(shù)是1981。
[例2]:求證:四個(gè)連續(xù)的整數(shù)的積加上1,等于一個(gè)奇數(shù)的平方(1954年基輔數(shù)學(xué)競(jìng)賽題)。
分析 設(shè)四個(gè)連續(xù)的整數(shù)為,其中n為整數(shù)。欲證
是一奇數(shù)的平方,只需將它通過(guò)因式分解而變成一個(gè)奇數(shù)的平方即可。
證明 設(shè)這四個(gè)整數(shù)之積加上1為m,則
而n(n+1)是兩個(gè)連續(xù)整數(shù)的積,所以是偶數(shù);又因?yàn)?n+1是奇數(shù),因而n(n+1)+2n+1是奇數(shù)。這就證明了m是一個(gè)奇數(shù)的平方。
[例3]:求證:11,111,1111,這串?dāng)?shù)中沒(méi)有完全平方數(shù)(1972年基輔數(shù)學(xué)競(jìng)賽題)。
分析 形如的數(shù)若是完全平方數(shù),必是末位為1或9的數(shù)的平方,即
或
在兩端同時(shí)減去1之后即可推出矛盾。
證明 若,則
因?yàn)樽蠖藶槠鏀?shù),右端為偶數(shù),所以左右兩端不相等。
若,則
因?yàn)樽蠖藶槠鏀?shù),右端為偶數(shù),所以左右兩端不相等。
綜上所述,不可能是完全平方數(shù)。
另證 由為奇數(shù)知,若它為完全平方數(shù),則只能是奇數(shù)的平方。但已證過(guò),奇數(shù)的平方其十位數(shù)字必是偶數(shù),而十位上的數(shù)字為1,所以不是完全平方數(shù)。
[例4]:試證數(shù)列49,4489,444889,的每一項(xiàng)都是完全平方數(shù)。
證明
=
=++1
=4+8+1
=4()(9+1)+8+1
=36()+12+1
=(6+1)
即為完全平方數(shù)。
[例5]:用300個(gè)2和若干個(gè)0組成的整數(shù)有沒(méi)有可能是完全平方數(shù)?
解:設(shè)由300個(gè)2和若干個(gè)0組成的數(shù)為A,則其數(shù)字和為600
3︱600 ∴3︱A
此數(shù)有3的因子,故9︱A。但9︱600,∴矛盾。故不可能有完全平方數(shù)。
[例6]:試求一個(gè)四位數(shù),它是一個(gè)完全平方數(shù),并且它的前兩位數(shù)字相同,后兩位數(shù)字也相同(1999小學(xué)數(shù)學(xué)世界邀請(qǐng)賽試題)。
解:設(shè)此數(shù)為
此數(shù)為完全平方,則必須是11的倍數(shù)。因此11︱a + b,而a,b為0,1,2,9,故共有(2,9),(3,8), (4,7),(9,2)等8組可能。
直接驗(yàn)算,可知此數(shù)為7744=88。
[例7]:求滿足下列條件的所有自然數(shù):
(1)它是四位數(shù)。
(2)被22除余數(shù)為5。
(3)它是完全平方數(shù)。
解:設(shè),其中n,N為自然數(shù),可知N為奇數(shù)。
11︱N - 4或11︱N + 4
或
k = 1
k = 2
k = 3
k = 4
k = 5
所以此自然數(shù)為1369, 2601, 3481, 5329, 6561, 9025。
[例8]:甲、乙兩人合養(yǎng)了n頭羊,而每頭羊的賣價(jià)又恰為n元,全部賣完后,兩人分錢方法如下:先由甲拿十元,再由乙拿十元,如此輪流,拿到最后,剩下不足十元,輪到乙拿去。為了平均分配,甲應(yīng)該補(bǔ)給乙多少元(第2屆“祖沖之杯”初中數(shù)學(xué)邀請(qǐng)賽試題)?
解:n頭羊的總價(jià)為元,由題意知元中含有奇數(shù)個(gè)10元,即完全平方數(shù)的十位數(shù)字是奇數(shù)。如果完全平方數(shù)的十位數(shù)字是奇數(shù),則它的個(gè)位數(shù)字一定是6。所以,的末位數(shù)字為6,即乙最后拿的是6元,從而為平均分配,甲應(yīng)補(bǔ)給乙2元。
[例9]:矩形四邊的長(zhǎng)度都是小于10的整數(shù)(單位:公分),這四個(gè)長(zhǎng)度數(shù)可構(gòu)成一個(gè)四位數(shù),這個(gè)四位數(shù)的千位數(shù)字與百位數(shù)字相同,并且這四位數(shù)是一個(gè)完全平方數(shù),求這個(gè)矩形的面積(1986年縉云杯初二數(shù)學(xué)競(jìng)賽題)。
解:設(shè)矩形的邊長(zhǎng)為x,y,則四位數(shù)
∵N是完全平方數(shù),11為質(zhì)數(shù) ∴x+y能被11整除。
又 ,得x+y=11。
∴∴9x+1是一個(gè)完全平方數(shù),而,驗(yàn)算知x=7滿足條件。又由x+y=11得。
[例10]:求一個(gè)四位數(shù),使它等于它的四個(gè)數(shù)字和的四次方,并證明此數(shù)是唯一的。
解:設(shè)符合題意的四位數(shù)為,則,∴為五位數(shù),為三位數(shù),∴。經(jīng)計(jì)算得,其中符合題意的只有2401一個(gè)。
[例11]:求自然數(shù)n,使的值是由數(shù)字0,2,3,4,4,7,8,8,9組成。
解:顯然,。為了便于估計(jì),我們把的變化范圍放大到,于是,即!撸。
另一方面,因已知九個(gè)數(shù)碼之和是3的倍數(shù),故及n都是3的倍數(shù)。這樣,n只有24,27,30三種可能。但30結(jié)尾有六個(gè)0,故30不合要求。經(jīng)計(jì)算得
故所求的自然數(shù)n = 27。
相關(guān)推薦:2011年中招考試:《初中數(shù)學(xué)》競(jìng)賽講座匯總
·2021中考語(yǔ)文閱讀理解最全的33套答題公式 (2020-11-10 17:20:05)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:健康的生活 (2019-11-8 14:54:53)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:生物技術(shù) (2019-11-8 14:53:20)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:生物的多樣性 (2019-11-8 14:50:27)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:生物的生殖發(fā)育與遺 (2019-11-8 14:48:17)
2022年海南中考地理真題及答案已公布
2022年海南中考生物真題及答案已公布
2022年海南中考?xì)v史真題及答案已公布
2022年海南中考政治真題及答案已公布
2022年海南中考化學(xué)真題及答案已公布
2022年海南中考物理真題及答案已公布
2022年海南中考英語(yǔ)真題及答案已公布
2022年海南中考數(shù)學(xué)真題及答案已公布
2022年海南中考語(yǔ)文真題及答案已公布
2022年福建漳州中考成績(jī)查詢?nèi)肟谝验_(kāi)通
2022廣東汕尾中考成績(jī)7月13日公布
2022年黑龍江齊齊哈爾中考成績(jī)查詢?nèi)肟谝?/a>
2022年黑龍江哈爾濱中考成績(jī)查詢?nèi)肟谝验_(kāi)
2022年安徽亳州中考成績(jī)7月2日公布
2022年安徽銅陵中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)
2022年福建廈門中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)
2022寧夏銀川中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)擊
2022年吉安市中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)擊
國(guó)家 | 北京 | 天津 | 上海 | 重慶 |
河北 | 山西 | 遼寧 | 吉林 | 江蘇 |
浙江 | 安徽 | 福建 | 江西 | 山東 |
河南 | 湖北 | 湖南 | 廣東 | 廣西 |
海南 | 四川 | 貴州 | 云南 | 西藏 |
陜西 | 甘肅 | 寧夏 | 青海 | 新疆 |
黑龍江 | 內(nèi)蒙古 | 更多 |
·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽(tīng) ·經(jīng)濟(jì)師考試培訓(xùn) 試聽(tīng)
·執(zhí)業(yè)藥師考試培訓(xùn) 試聽(tīng) ·報(bào)關(guān)員考試培訓(xùn) 試聽(tīng)
·銀行從業(yè)考試培訓(xùn) 試聽(tīng) ·會(huì)計(jì)證考試培訓(xùn) 試聽(tīng)
·證券從業(yè)考試培訓(xùn) 試聽(tīng) ·華圖公務(wù)員培訓(xùn) 試聽(tīng)
·二級(jí)建造師考試培訓(xùn) 試聽(tīng) ·公務(wù)員培訓(xùn) 網(wǎng)校 試聽(tīng)
·一級(jí)建造師考試培訓(xùn) 試聽(tīng) ·結(jié)構(gòu)師考試培訓(xùn) 試聽(tīng)
·注冊(cè)建筑師考試培訓(xùn) 試聽(tīng) ·造價(jià)師考試培訓(xùn) 試聽(tīng)
·質(zhì)量資格考試培訓(xùn) 試聽(tīng) ·咨詢師考試培訓(xùn) 試聽(tīng)
·衛(wèi)生職稱考試培訓(xùn) 試聽(tīng) ·監(jiān)理師考試培訓(xùn) 試聽(tīng)
·報(bào)關(guān)員考試培訓(xùn) 試聽(tīng) ·經(jīng)濟(jì)師考試培訓(xùn) 試聽(tīng)
·銀行從業(yè)考試培訓(xùn) 試聽(tīng) ·會(huì)計(jì)證考試培訓(xùn) 試聽(tīng)
·證券從業(yè)考試培訓(xùn) 試聽(tīng) ·注冊(cè)會(huì)計(jì)師培訓(xùn) 試聽(tīng)
·期貨從業(yè)考試培訓(xùn) 試聽(tīng) ·統(tǒng)計(jì)師考試培訓(xùn) 試聽(tīng)
·國(guó)際商務(wù)師考試培訓(xùn) 試聽(tīng) ·稅務(wù)師考試培訓(xùn) 試聽(tīng)
·人力資源師考試培訓(xùn) 試聽(tīng) ·評(píng)估師考試培訓(xùn) 試聽(tīng)
·管理咨詢師考試培訓(xùn) 試聽(tīng) ·審計(jì)師考試培訓(xùn) 試聽(tīng)
·報(bào)檢員考試培訓(xùn) 試聽(tīng) ·高級(jí)會(huì)計(jì)師考試培訓(xùn) 試聽(tīng)
·外銷員考試培訓(xùn) 試聽(tīng) ·公務(wù)員 試聽(tīng) 教育門戶
·二級(jí)建造師考試培訓(xùn) 試聽(tīng) ·招標(biāo)師考試培訓(xùn) 試聽(tīng)
·造價(jià)師考試培訓(xùn) 試聽(tīng) ·物業(yè)管理師考試培訓(xùn) 試聽(tīng)
·監(jiān)理師考試培訓(xùn) 試聽(tīng) ·設(shè)備監(jiān)理師考試培訓(xùn) 試聽(tīng)
·安全師考試培訓(xùn) 試聽(tīng) ·巖土工程師考試培訓(xùn) 試聽(tīng)
·咨詢師考試培訓(xùn) 試聽(tīng) ·投資項(xiàng)目管理師培訓(xùn) 試聽(tīng)
·結(jié)構(gòu)師考試培訓(xùn) 試聽(tīng) ·公路監(jiān)理師考試培訓(xùn) 試聽(tīng)
·建筑師考試培訓(xùn) 試聽(tīng) ·衛(wèi)生資格考試培訓(xùn) 試聽(tīng)
·質(zhì)量資格考試培訓(xùn) 試聽(tīng) ·執(zhí)業(yè)藥師考試培訓(xùn) 試聽(tīng)
·造價(jià)員考試培訓(xùn) 試聽(tīng) ·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽(tīng)