第六章 抽樣推斷
一、名詞解釋
1、抽樣推斷:是在抽樣調查的基礎上,利用樣本的實際資料計算樣本指標,并據以推斷總體數(shù)量特征的一種統(tǒng)計方法。
2、總體:是指包括調查對象所有單位的全體。它是由許多性質相同的調查單位組成的,一般用大寫字母N代表總體單位數(shù)。
3、總體成數(shù):是指總體中具有某一相同標志表現(xiàn)的單位數(shù)占全部總體單位數(shù)的比重,一般用P表示。
4、樣本成數(shù):是指樣本中具有某一相同標志表現(xiàn)的單位數(shù)占樣本容量的比重。
5、重置抽樣:是從總體抽取樣本時,隨機抽取一個樣本單位,記錄該單位有關標志表現(xiàn)以后,把它放回到總體中去,再從總體中隨機抽取第二個樣本單位,記錄它的有關標志表現(xiàn)以后,也把它放回總體中去,照此下去直到抽選第n個樣本單位。
6、抽樣誤差:就是指樣本指標與被它估計的總體相應指標之間數(shù)量上的差數(shù)。
7、點估計:又稱定值估計,就是用實際樣本指標數(shù)值作為總體參數(shù)的估計值。
8、等距抽樣:又稱機械抽樣或系統(tǒng)抽樣。它是將總體全部單位按某一標志排隊,而后按固定的順序和間隔在總體中抽取若干個樣本單位組成樣本的一種抽樣方式。
二、簡答題
1、簡述重置抽樣和不重置抽樣方法會產生的三個差別。
答:第一,抽取的樣本數(shù)目不同,用重置抽樣方法從總體中所能抽取到的樣本個數(shù)比不重置抽樣方法抽取到的樣本個數(shù)多;第二,抽樣誤差的計算公式不同;第三,抽樣誤差的大小不同,在相同的條件下,重置抽樣誤差大于不重置抽樣誤差。
2、簡述抽樣推斷的特點。
答:第一,抽樣推斷是由部分推斷整體的一種研究方法。抽樣推斷既省時、省力,又經濟,并能達到準確認識總體的數(shù)量特征這一目的;第二,抽樣推斷建立在隨機概率抽取樣本的基礎上。遵循隨機原則進行抽樣,是對總體進行科學估計和推斷的前提;第三,抽樣推斷是運用概率估計的方法。利用樣本指標來估計總體指標時,在數(shù)學上運用的是不確定的概率估計法;第四,抽樣推斷的誤差可以事先計算,并能加以控制。在隨機原則下,可以描述出抽樣誤差的分布,因而可根據總體標志值的差異程度,通過增加樣本單位數(shù)或改進抽樣方法等途徑把抽樣誤差控制在一定范圍內。
3、簡述影響抽樣平均誤差的因素。
答:第一,總體各單位標志的變異程度?傮w標志變異程度愈大,抽樣誤差愈大。反之,總體標志變異程度愈小,抽樣誤差也愈小;第二,樣本容量的大小;第蘭,不同抽樣方法的影響;第四,不同抽樣組織方式的影響。
4、簡述等距抽樣的特點。
答:第一,這種抽樣方式組織簡便,易于實施;第二,在已知總體某些有關信息的情況下,采用等距抽樣能保證樣本單位在總體中均勻地分布,從而提高了樣本對總體的代表性,有利于降低抽樣誤差。
5、簡述整群抽樣的特點。
答:第一,整群抽樣直接抽取的不是總體單位而是“群”;第二,影響抽樣誤差的總體方差是總體群間方差;第三,整群抽樣一般采用不重置抽樣,所以抽樣誤差的計算采用不重置抽樣公式。
三、論述題
1、試述影響必要樣本容量的因素。
答:第一,總體各單位標志變異程度;第二,允許的極限誤差的大小。允許的極限誤差越大,樣本容量越小。反之,允許的極限誤差越小,樣本容量越大;第三,抽樣方法。在其他條件相同的情況下,重置抽樣比不重置抽樣要抽取多一些的樣本單位;第四,抽樣方式;第五,抽樣推斷的可靠程度即概率F(t)的大小。推斷的可靠程度要求越高即F(t)越大,樣本容量越多。反之,推斷的可靠程度要求越低,樣本容量越少。
2、試述計算必要樣本容量應注意的問題。
答:第一,用公式計算的樣本容量是最低的,也是最必要的樣本;第二,用公式計算樣本容量時,一般總體方差是未知的,在實際計算時往往利用有關資料代替;第三,如果進行一次抽樣調查,同時對總體平均數(shù)和成數(shù)進行區(qū)間估計,運用公式計算兩個樣本容量,一般情況下,為了同時滿足兩個推斷的要求,一般在兩個樣本容量中選擇較大的一個;第四,利用公式計算的樣本容量不一定是整數(shù),如果帶小數(shù),一般不采取四舍五入的辦法化成整數(shù),而是用比這個數(shù)大的鄰近整數(shù)代替。
編輯推薦: