常考題型:第一,齊次線性方程組有無零解和非齊次線性方程組是否有解的判定。對于齊次線性方程組,當(dāng)方程組的方程個數(shù)和未知量的個數(shù)不等時,可以按照系數(shù)矩陣的秩和未知量個數(shù)的大小關(guān)系來判定,還可以利用系數(shù)矩陣的列向量組是否相關(guān)來判定;當(dāng)方程組的方程個數(shù)和未知量個數(shù)相同時,可以利用系數(shù)行列式與零的大小關(guān)系來判定,還可以利用系數(shù)矩陣有無零特征值來判定;對于非齊次線性方程組,可以利用系數(shù)矩陣的秩和增廣矩陣的秩是否相等即有關(guān)矛盾方程來判定,還可以從一個向量可否由一向量組線性表出來判定;當(dāng)方程個數(shù)和未知量個數(shù)相等時,可以利用系數(shù)行列式是否為零來判定非齊次線性方程組的唯一解情況;今年的考題就體現(xiàn)了這種思想。
第二,齊次線性方程組的非零解的結(jié)構(gòu)和非齊次線性方程組解的的無窮多解的結(jié)構(gòu)問題。如果齊次線性方程組有無窮多個非零解時,其通解是由其基礎(chǔ)解系來表示的;如果非齊次線性方程組有無窮多解時,其通解是由對應(yīng)的齊次線性方程組和通解加本身一個特解所構(gòu)成;
第三,齊次線性方程組的基礎(chǔ)解系的求解與證明。利用系數(shù)矩陣的極大線性無關(guān)組的內(nèi)容進(jìn)行分析;
第四,齊次(非齊次)線性方程組的求解(含對參數(shù)取值的討論)。如果方程組的方程個數(shù)和未知量個數(shù)不相等時,只能對其系數(shù)矩陣或增廣矩陣進(jìn)行初等行變換,化為階梯形矩陣來進(jìn)行討論;如果方程組的方程個數(shù)和未知量個數(shù)相同時,初等行變換和行列式可以結(jié)合起來一起進(jìn)行分析和討論;
第五,兩個方程組的公共解、通解問題。這部分有固定解法,考生要多加練習(xí)。
由于這部分常以大題出現(xiàn),分值較高,需要考生提高警惕,在理解的基礎(chǔ)上多做題。
編輯推薦: