首頁 - 網(wǎng)校 - 萬題庫 - 直播 - 雄鷹網(wǎng)校 - 團購 - 書城 - 模考 - 學習通 - 導(dǎo)航 -
首頁網(wǎng)校萬題庫直播雄鷹網(wǎng)校團購書城模考論壇實用文檔作文大全寶寶起名
2015中考
法律碩士
2015高考
MBA考試
2015考研
MPA考試
在職研
中科院
考研培訓(xùn)
專升本
自學考試 成人高考
四 六 級
GRE考試
攻碩英語
零起點日語
職稱英語
口譯筆譯
申碩英語
零起點韓語
商務(wù)英語
日語等級
GMAT考試
公共英語
職稱日語
新概念英語
專四專八
博思考試
零起點英語
托?荚
托業(yè)考試
零起點法語
雅思考試
成人英語三級
零起點德語
等級考試
華為認證
水平考試
Java認證
職稱計算機 微軟認證 思科認證 Oracle認證 Linux認證
公 務(wù) 員
導(dǎo)游考試
物 流 師
出版資格
單 證 員
報 關(guān) 員
外 銷 員
價格鑒證
網(wǎng)絡(luò)編輯
駕 駛 員
報檢員
法律顧問
管理咨詢
企業(yè)培訓(xùn)
社會工作者
銀行從業(yè)
教師資格
營養(yǎng)師
保險從業(yè)
普 通 話
證券從業(yè)
跟 單 員
秘書資格
電子商務(wù)
期貨考試
國際商務(wù)
心理咨詢
營 銷 師
司法考試
國際貨運代理人
人力資源管理師
廣告師職業(yè)水平
衛(wèi)生資格 執(zhí)業(yè)醫(yī)師 執(zhí)業(yè)藥師 執(zhí)業(yè)護士
會計從業(yè)資格
基金從業(yè)資格
統(tǒng)計從業(yè)資格
經(jīng)濟師
精算師
統(tǒng)計師
會計職稱
法律顧問
ACCA考試
初級會計職稱
資產(chǎn)評估師
高級經(jīng)濟師
注冊會計師
高級會計師
美國注冊會計師
審計師考試
國際內(nèi)審師
注冊稅務(wù)師
理財規(guī)劃師
一級建造師
安全工程師
設(shè)備監(jiān)理師
公路監(jiān)理師
公路造價師
二級建造師
招標師考試
物業(yè)管理師
電氣工程師
建筑師考試
造價工程師
注冊測繪師
質(zhì)量工程師
巖土工程師
注冊給排水
造價員考試
注冊計量師
環(huán)保工程師
化工工程師
暖通工程師
咨詢工程師
結(jié)構(gòu)工程師
城市規(guī)劃師
材料員考試
消防工程師
監(jiān)理工程師
房地產(chǎn)估價
土地估價師
安全評價師
房地產(chǎn)經(jīng)紀人
投資項目管理師
環(huán)境影響評價師
土地登記代理人
寶寶起名
繽紛校園
實用文檔
入黨申請
英語學習
思想?yún)R報
作文大全
工作總結(jié)
求職招聘 論文下載 直播課堂
您現(xiàn)在的位置: 考試吧 > 考研 > 考研復(fù)習指導(dǎo) > 考研數(shù)學復(fù)習指導(dǎo) > 2022考研數(shù)學大綱 > 正文

2018與2017考研數(shù)學一考試大綱變化對比:高數(shù)部分

2018年考研新大綱及解析專題熱點文章關(guān)注微信獲取大綱

章節(jié)

2017年考試數(shù)學大綱考試內(nèi)容和考試要求

2018年考試數(shù)學大綱考試內(nèi)容和考試要求

變化

 

一、函數(shù)、極限、連續(xù)

考試內(nèi)容

函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)函數(shù)關(guān)系的建立

數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限和右極限無窮小量和無窮大量的概念及其關(guān)系無窮小量的性質(zhì)及無窮小量的比較極限的四則運算極限存在的兩個準則:單調(diào)有界準則和夾逼準則兩個重要極限:

函數(shù)連續(xù)的概念函數(shù)間斷點的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì)

考試要求

1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應(yīng)用問題的函數(shù)關(guān)系

2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性

3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念

4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念

5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關(guān)系

6.掌握極限的性質(zhì)及四則運算法則

7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法

8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限

9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型

10.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應(yīng)用這些性質(zhì)

考試內(nèi)容

函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)函數(shù)關(guān)系的建立

數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限和右極限無窮小量和無窮大量的概念及其關(guān)系無窮小量的性質(zhì)及無窮小量的比較極限的四則運算極限存在的兩個準則:單調(diào)有界準則和夾逼準則兩個重要極限:

函數(shù)連續(xù)的概念函數(shù)間斷點的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì)

考試要求

1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應(yīng)用問題的函數(shù)關(guān)系

2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性

3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念

4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念

5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關(guān)系

6.掌握極限的性質(zhì)及四則運算法則

7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法

8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限

9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型

10.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應(yīng)用這些性質(zhì)

對比
:無變化

二、一元函數(shù)微分學

考試內(nèi)容

導(dǎo)數(shù)和微分的概念導(dǎo)數(shù)的幾何意義和物理意義函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系平面曲線的切線和法線導(dǎo)數(shù)和微分的四則運算基本初等函數(shù)的導(dǎo)數(shù)復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法高階導(dǎo)數(shù)一階微分形式的不變性微分中值定理洛必達(L'Hospital)法則函數(shù)單調(diào)性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)圖形的描繪函數(shù)的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑

考試要求

1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系

2.掌握導(dǎo)數(shù)的四則運算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式。了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分

3.了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù).

4.會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù).

5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理.

6.掌握用洛必達法則求未定式極限的方法.

7.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用.

8.會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù).當時,的圖形是凹的;當時,的圖形是凸的),會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形.

9.了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑

考試內(nèi)容

導(dǎo)數(shù)和微分的概念導(dǎo)數(shù)的幾何意義和物理意義函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系平面曲線的切線和法線導(dǎo)數(shù)和微分的四則運算基本初等函數(shù)的導(dǎo)數(shù)復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法高階導(dǎo)數(shù)一階微分形式的不變性微分中值定理洛必達(L'Hospital)法則函數(shù)單調(diào)性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)圖形的描繪函數(shù)的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑

考試要求

1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系

2.掌握導(dǎo)數(shù)的四則運算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式。了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分

3.了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù).

4.會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù).

5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理.

6.掌握用洛必達法則求未定式極限的方法.

7.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用.

8.會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù).當時,的圖形是凹的;當時,的圖形是凸的),會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形.

9.了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑

對比
:無變化

三、一元積分學

考試內(nèi)容
原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)及其導(dǎo)數(shù) 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分 反常(廣義)積分 定積分的應(yīng)用

考試要求

1.理解原函數(shù)的概念,理解不定積分和定積分的概念.

2.掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法.

3.會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分.

4.理解積分上限的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式.

5.了解反常積分的概念,會計算反常積分.

6.掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的平均值.

考試內(nèi)容
原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)及其導(dǎo)數(shù) 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分 反常(廣義)積分 定積分的應(yīng)用

考試要求

1.理解原函數(shù)的概念,理解不定積分和定積分的概念.

2.掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法.

3.會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分.

4.理解積分上限的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式.

5.了解反常積分的概念,會計算反常積分.

6.掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的平均值.

對比
:無變化

四、向量代數(shù)和空間解析幾何

考試內(nèi)容

向量的概念向量的線性運算向量的數(shù)量積和向量積向量的混合積兩向量垂直、平行的條件兩向量的夾角向量的坐標表達式及其運算單位向量方向數(shù)與方向余弦曲面方程和空間曲線方程的概念平面方程直線方程平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件點到平面和點到直線的距離球面柱面旋轉(zhuǎn)曲面常用的二次曲面方程及其圖形空間曲線的參數(shù)方程和一般方程空間曲線在坐標面上的投影曲線方程

考試要求

1.理解空間直角坐標系,理解向量的概念及其表示

2.掌握向量的運算(線性運算、數(shù)量積、向量積、混合積),了解兩個向量垂直、平行的條件

3.理解單位向量、方向數(shù)與方向余弦、向量的坐標表達式,掌握用坐標表達式進行向量運算的方法

4.掌握平面方程和直線方程及其求法

5.會求平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相互關(guān)系(平行、垂直、相交等))解決有關(guān)問題

6.會求點到直線以及點到平面的距離

7.了解曲面方程和空間曲線方程的概念

8.了解常用二次曲面的方程及其圖形,會求簡單的柱面和旋轉(zhuǎn)曲面的方程

9.了解空間曲線的參數(shù)方程和一般方程。了解空間曲線在坐標平面上的投影,并會求該投影曲線的方程

考試內(nèi)容

向量的概念向量的線性運算向量的數(shù)量積和向量積向量的混合積兩向量垂直、平行的條件兩向量的夾角向量的坐標表達式及其運算單位向量方向數(shù)與方向余弦曲面方程和空間曲線方程的概念平面方程直線方程平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件點到平面和點到直線的距離球面柱面旋轉(zhuǎn)曲面常用的二次曲面方程及其圖形空間曲線的參數(shù)方程和一般方程空間曲線在坐標面上的投影曲線方程

考試要求

1.理解空間直角坐標系,理解向量的概念及其表示

2.掌握向量的運算(線性運算、數(shù)量積、向量積、混合積),了解兩個向量垂直、平行的條件

3.理解單位向量、方向數(shù)與方向余弦、向量的坐標表達式,掌握用坐標表達式進行向量運算的方法

4.掌握平面方程和直線方程及其求法

5.會求平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相互關(guān)系(平行、垂直、相交等))解決有關(guān)問題

6.會求點到直線以及點到平面的距離

7.了解曲面方程和空間曲線方程的概念

8.了解常用二次曲面的方程及其圖形,會求簡單的柱面和旋轉(zhuǎn)曲面的方程

9.了解空間曲線的參數(shù)方程和一般方程。了解空間曲線在坐標平面上的投影,并會求該投影曲線的方程

對比
:無變化

五、多元函數(shù)微分學

考試內(nèi)容

多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連續(xù)的概念有界閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì)多元函數(shù)的偏導(dǎo)數(shù)和全微分全微分存在的必要條件和充分條件

多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法二階偏導(dǎo)數(shù)方向?qū)?shù)和梯度空間曲線的切線和法平面曲面的切平面和法線二元函數(shù)的二階泰勒公式多元函數(shù)的極值和條件極值多元函數(shù)的最大值、最小值及其簡單應(yīng)用

考試要求

1.理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義

2.了解二元函數(shù)的極限與連續(xù)的概念以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)

3.理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念,會求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性

4.理解方向?qū)?shù)與梯度的概念,并掌握其計算方法

5.掌握多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù)的求法

6.了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導(dǎo)數(shù)

7.了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程

8.了解二元函數(shù)的二階泰勒公式

9.理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決一些簡單的應(yīng)用問題

考試內(nèi)容

多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連續(xù)的概念有界閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì)多元函數(shù)的偏導(dǎo)數(shù)和全微分全微分存在的必要條件和充分條件

多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法二階偏導(dǎo)數(shù)方向?qū)?shù)和梯度空間曲線的切線和法平面曲面的切平面和法線二元函數(shù)的二階泰勒公式多元函數(shù)的極值和條件極值多元函數(shù)的最大值、最小值及其簡單應(yīng)用

考試要求

1.理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義

2.了解二元函數(shù)的極限與連續(xù)的概念以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)

3.理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念,會求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性

4.理解方向?qū)?shù)與梯度的概念,并掌握其計算方法

5.掌握多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù)的求法

6.了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導(dǎo)數(shù)

7.了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程

8.了解二元函數(shù)的二階泰勒公式

9.理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決一些簡單的應(yīng)用問題

對比
:無變化

六、多元函數(shù)積分學

考試內(nèi)容

二重積分與三重積分的概念、性質(zhì)、計算和應(yīng)用兩類曲線積分的概念、性質(zhì)及計算兩類曲線積分的關(guān)系格林(Green)公式平面曲線積分與路徑無關(guān)的條件二元函數(shù)全微分的原函數(shù)兩類曲面積分的概念、性質(zhì)及計算兩類曲面積分的關(guān)系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及計算曲線積分和曲面積分的應(yīng)用

考試要求

1.理解二重積分、三重積分的概念,了解重積分的性質(zhì),,了解二重積分的中值定理

2.掌握二重積分的計算方法(直角坐標、極坐標),會計算三重積分(直角坐標、柱面坐標、球面坐標)

3.理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系

4.掌握計算兩類曲線積分的方法

5.掌握格林公式并會運用平面曲線積分與路徑無關(guān)的條件,會求二元函數(shù)全微分的原函數(shù)

6.了解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關(guān)系,掌握計算兩類曲面積分的方法,掌握用高斯公式計算曲面積分的方法,并會用斯托克斯公式計算曲線積分

7.了解散度與旋度的概念,并會計算

8.會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質(zhì)量、質(zhì)心、形心、轉(zhuǎn)動慣量、引力、功及流量等)

考試內(nèi)容

二重積分與三重積分的概念、性質(zhì)、計算和應(yīng)用兩類曲線積分的概念、性質(zhì)及計算兩類曲線積分的關(guān)系格林(Green)公式平面曲線積分與路徑無關(guān)的條件二元函數(shù)全微分的原函數(shù)兩類曲面積分的概念、性質(zhì)及計算兩類曲面積分的關(guān)系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及計算曲線積分和曲面積分的應(yīng)用

考試要求

1.理解二重積分、三重積分的概念,了解重積分的性質(zhì),,了解二重積分的中值定理

2.掌握二重積分的計算方法(直角坐標、極坐標),會計算三重積分(直角坐標、柱面坐標、球面坐標)

3.理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系

4.掌握計算兩類曲線積分的方法

5.掌握格林公式并會運用平面曲線積分與路徑無關(guān)的條件,會求二元函數(shù)全微分的原函數(shù)

6.了解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關(guān)系,掌握計算兩類曲面積分的方法,掌握用高斯公式計算曲面積分的方法,并會用斯托克斯公式計算曲線積分

7.了解散度與旋度的概念,并會計算

8.會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質(zhì)量、質(zhì)心、形心、轉(zhuǎn)動慣量、引力、功及流量等)

對比
:無變化

七、無窮級數(shù)

考試內(nèi)容

常數(shù)項級數(shù)的收斂與發(fā)散的概念收斂級數(shù)的和的概念級數(shù)的基本性質(zhì)與收斂的必要條件幾何級數(shù)與級數(shù)及其收斂性正項級數(shù)收斂性的判別法交錯級數(shù)與萊布尼茨定理任意項級數(shù)的絕對收斂與條件收斂函數(shù)項級數(shù)的收斂域與和函數(shù)的概念冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域冪級數(shù)的和函數(shù)冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)簡單冪級數(shù)的和函數(shù)的求法初等函數(shù)的冪級數(shù)展開式函數(shù)的傅里葉(Fourier)系數(shù)與傅里葉級數(shù)狄利克雷(Dirichlet)定理函數(shù)在上的傅里葉級數(shù)函數(shù)在上的正弦級數(shù)和余弦級數(shù)

考試要求

1.理解常數(shù)項級數(shù)收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件

2.掌握幾何級數(shù)與級數(shù)的收斂與發(fā)散的條件

3.掌握正項級數(shù)收斂性的比較判別法和比值判別法,會用根值判別法

4.掌握交錯級數(shù)的萊布尼茨判別法

5.了解任意項級數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關(guān)系

6.了解函數(shù)項級數(shù)的收斂域及和函數(shù)的概念

7.理解冪級數(shù)收斂半徑的概念,并掌握冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法

8.了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項求導(dǎo)和逐項積分),會求一些冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項級數(shù)的和

9.了解函數(shù)展開為泰勒級數(shù)的充分必要條件

10.掌握,,,及的麥克勞林(Maclaurin)展開式,會用它們將一些簡單函數(shù)間接展開為冪級數(shù)

11.了解傅里葉級數(shù)的概念和狄利克雷收斂定理,會將定義在上的函數(shù)展開為傅里葉級數(shù),會將定義在上的函數(shù)展開為正弦級數(shù)與余弦級數(shù),會寫出傅里葉級數(shù)的和函數(shù)的表達式

考試內(nèi)容

常數(shù)項級數(shù)的收斂與發(fā)散的概念收斂級數(shù)的和的概念級數(shù)的基本性質(zhì)與收斂的必要條件幾何級數(shù)與級數(shù)及其收斂性正項級數(shù)收斂性的判別法交錯級數(shù)與萊布尼茨定理任意項級數(shù)的絕對收斂與條件收斂函數(shù)項級數(shù)的收斂域與和函數(shù)的概念冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域冪級數(shù)的和函數(shù)冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)簡單冪級數(shù)的和函數(shù)的求法初等函數(shù)的冪級數(shù)展開式函數(shù)的傅里葉(Fourier)系數(shù)與傅里葉級數(shù)狄利克雷(Dirichlet)定理函數(shù)在上的傅里葉級數(shù)函數(shù)在上的正弦級數(shù)和余弦級數(shù)

考試要求

1.理解常數(shù)項級數(shù)收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件

2.掌握幾何級數(shù)與級數(shù)的收斂與發(fā)散的條件

3.掌握正項級數(shù)收斂性的比較判別法和比值判別法,會用根值判別法

4.掌握交錯級數(shù)的萊布尼茨判別法

5.了解任意項級數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關(guān)系

6.了解函數(shù)項級數(shù)的收斂域及和函數(shù)的概念

7.理解冪級數(shù)收斂半徑的概念,并掌握冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法

8.了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項求導(dǎo)和逐項積分),會求一些冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項級數(shù)的和

9.了解函數(shù)展開為泰勒級數(shù)的充分必要條件

10.掌握,,,及的麥克勞林(Maclaurin)展開式,會用它們將一些簡單函數(shù)間接展開為冪級數(shù)

11.了解傅里葉級數(shù)的概念和狄利克雷收斂定理,會將定義在上的函數(shù)展開為傅里葉級數(shù),會將定義在上的函數(shù)展開為正弦級數(shù)與余弦級數(shù),會寫出傅里葉級數(shù)的和函數(shù)的表達式

對比
:無變化

八、常微分方程

考試內(nèi)容

常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程伯努利(Bernoulli)方程全微分方程可用簡單的變量代換求解的某些微分方程可降階的高階微分方程線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理二階常系數(shù)齊次線性微分方程高于二階的某些常系數(shù)齊次線性微分方程簡單的二階常系數(shù)非齊次線性微分方程歐拉(Euler)方程微分方程的簡單應(yīng)用

考試要求

1.了解微分方程及其階、解、通解、初始條件和特解等概念

2.掌握變量可分離的微分方程及一階線性微分方程的解法

3.會解齊次微分方程、伯努利方程和全微分方程,會用簡單的變量代換解某些微分方程

4.會用降階法解下列形式的微分方程

5.理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)

6.掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程

7.會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程

8.會解歐拉方程

9.會用微分方程解決一些簡單的應(yīng)用問題

考試內(nèi)容

常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程伯努利(Bernoulli)方程全微分方程可用簡單的變量代換求解的某些微分方程可降階的高階微分方程線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理二階常系數(shù)齊次線性微分方程高于二階的某些常系數(shù)齊次線性微分方程簡單的二階常系數(shù)非齊次線性微分方程歐拉(Euler)方程微分方程的簡單應(yīng)用

考試要求

1.了解微分方程及其階、解、通解、初始條件和特解等概念

2.掌握變量可分離的微分方程及一階線性微分方程的解法

3.會解齊次微分方程、伯努利方程和全微分方程,會用簡單的變量代換解某些微分方程

4.會用降階法解下列形式的微分方程

5.理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)

6.掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程

7.會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程

8.會解歐拉方程

9.會用微分方程解決一些簡單的應(yīng)用問題

對比
:無變化

 

掃描/長按二維碼關(guān)注即可獲得考研大綱
獲取2018考研大綱
獲取2018考研報名時間
獲取2套仿真內(nèi)部資料
獲取歷年考試真題試卷

考研萬題庫手機題庫下載微信搜索"萬題庫考研"

  編輯推薦:

  考試吧策劃:2018年考研新大綱及解析專題 ※ 微信提醒

  直播解析:考試吧邀請名師直播解析2018考研大綱

  考試吧策劃:2018年考研招生簡章專題

  考研萬題庫 科學通過,懶人必備!

  考試吧策劃:2018年考研報考指南專題

版權(quán)聲明:如果考研網(wǎng)所轉(zhuǎn)載內(nèi)容不慎侵犯了您的權(quán)益,請與我們聯(lián)系800@exam8.com,我們將會及時處理。如轉(zhuǎn)載本考研網(wǎng)內(nèi)容,請注明出處。
Copyright © 2004- 考試吧考研網(wǎng) All Rights Reserved 
京ICP證060677 京ICP備05005269號 中國科學院研究生院權(quán)威支持(北京)