首頁 - 網(wǎng)校 - 萬題庫 - 美好明天 - 直播 - 導航
熱點搜索
學員登錄 | 用戶名
密碼
新學員
老學員
您現(xiàn)在的位置: 考試吧 > 考研 > 考研復習指導 > 考研數(shù)學復習指導 > 2022考研數(shù)學大綱 > 正文

2015年考研數(shù)學(一)考試大綱(完整清晰版)

來源:考試吧 2014-9-13 20:33:59 要考試,上考試吧! 考研萬題庫
2015年考研數(shù)學(一)考試大綱(完整清晰版),更多2015考研大綱、考研政治大綱 、考研英語大綱等,請關注考試吧考研網(wǎng)或搜索公眾微信號“考試吧考研”。

  五、多元函數(shù)微分學

  考試內容

  多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限與連續(xù)的概念 有界閉區(qū)域上多元連續(xù)函數(shù)的性質 多元函數(shù)的偏導數(shù)和全微分 全微分存在的必要條件和充分條件

  多元復合函數(shù)、隱函數(shù)的求導法 二階偏導數(shù) 方向導數(shù)和梯度 空間曲線的切線和法平面 曲面的切平面和法線 二元函數(shù)的二階泰勒公式 多元函數(shù)的極值和條件極值 多元函數(shù)的最大值、最小值及其簡單應用

  考試要求

  1.理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義.

  2.了解二元函數(shù)的極限與連續(xù)的概念以及有界閉區(qū)域上連續(xù)函數(shù)的性質.

  3.理解多元函數(shù)偏導數(shù)和全微分的概念,會求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性.

  4.理解方向導數(shù)與梯度的概念,并掌握其計算方法.

  5.掌握多元復合函數(shù)一階、二階偏導數(shù)的求法.

  6.了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導數(shù).

  7.了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程.

  8.了解二元函數(shù)的二階泰勒公式.

  9.理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決一些簡單的應用問題.

  六、多元函數(shù)積分學

  考試內容

  二重積分與三重積分的概念、性質、計算和應用 兩類曲線積分的概念、性質及計算 兩類曲線積分的關系 格林(Green)公式 平面曲線積分與路徑無關的條件 二元函數(shù)全微分的原函數(shù) 兩類曲面積分的概念、性質及計算 兩類曲面積分的關系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及計算 曲線積分和曲面積分的應用

  考試要求

  1.理解二重積分、三重積分的概念,了解重積分的性質,,了解二重積分的中值定理.

  2.掌握二重積分的計算方法(直角坐標、極坐標),會計算三重積分(直角坐標、柱面坐標、球面坐標).

  3.理解兩類曲線積分的概念,了解兩類曲線積分的性質及兩類曲線積分的關系.

  4.掌握計算兩類曲線積分的方法.

  5.掌握格林公式并會運用平面曲線積分與路徑無關的條件,會求二元函數(shù)全微分的原函數(shù).

  6.了解兩類曲面積分的概念、性質及兩類曲面積分的關系,掌握計算兩類曲面積分的方法,掌握用高斯公式計算曲面積分的方法,并會用斯托克斯公式計算曲線積分.

  7.了解散度與旋度的概念,并會計算.

  8.會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質量、質心、形心、轉動慣量、引力、功及流量等).

  七、無窮級數(shù)

  考試內容

  常數(shù)項級數(shù)的收斂與發(fā)散的概念 收斂級數(shù)的和的概念 級數(shù)的基本性質與收斂的必要條件 幾何級數(shù)與 級數(shù)及其收斂性 正項級數(shù)收斂性的判別法交錯級數(shù)與萊布尼茨定理任意項級數(shù)的絕對收斂與條件收斂 函數(shù)項級數(shù)的收斂域與和函數(shù)的概念 冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域 冪級數(shù)的和函數(shù) 冪級數(shù)在其收斂區(qū)間內的基本性質 簡單冪級數(shù)的和函數(shù)的求法 初等函數(shù)的冪級數(shù)展開式 函數(shù)的傅里葉(Fourier)系數(shù)與傅里葉級數(shù) 狄利克雷(Dirichlet)定理 函數(shù)在 上的傅里葉級數(shù) 函數(shù)在 上的正弦級數(shù)和余弦級數(shù)

  考試要求

  1.理解常數(shù)項級數(shù)收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質及收斂的必要條件.

  2.掌握幾何級數(shù)與 級數(shù)的收斂與發(fā)散的條件.

  3.掌握正項級數(shù)收斂性的比較判別法和比值判別法,會用根值判別法.

  4.掌握交錯級數(shù)的萊布尼茨判別法.

  5.了解任意項級數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系.

  6.了解函數(shù)項級數(shù)的收斂域及和函數(shù)的概念.

  7.理解冪級數(shù)收斂半徑的概念,并掌握冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法.

  8.了解冪級數(shù)在其收斂區(qū)間內的基本性質(和函數(shù)的連續(xù)性、逐項求導和逐項積分),會求一些冪級數(shù)在收斂區(qū)間內的和函數(shù),并會由此求出某些數(shù)項級數(shù)的和.

  9.了解函數(shù)展開為泰勒級數(shù)的充分必要條件.

  10.掌握麥克勞林(Maclaurin)展開式,會用它們將一些簡單函數(shù)間接展開為冪級數(shù).

  11.了解傅里葉級數(shù)的概念和狄利克雷收斂定理,會將定義在 上的函數(shù)展開為傅里葉級數(shù),會將定義在 上的函數(shù)展開為正弦級數(shù)與余弦級數(shù),會寫出傅里葉級數(shù)的和函數(shù)的表達式.

  八、常微分方程

  考試內容

  常微分方程的基本概念 變量可分離的微分方程 齊次微分方程 一階線性微分方程 伯努利(Bernoulli)方程 全微分方程 可用簡單的變量代換求解的某些微分方程 可降階的高階微分方程 線性微分方程解的性質及解的結構定理 二階常系數(shù)齊次線性微分方程 高于二階的某些常系數(shù)齊次線性微分方程 簡單的二階常系數(shù)非齊次線性微分方程 歐拉(Euler)方程 微分方程的簡單應用

  考試要求

  1.了解微分方程及其階、解、通解、初始條件和特解等概念.

  2.掌握變量可分離的微分方程及一階線性微分方程的解法.

  3.會解齊次微分方程、伯努利方程和全微分方程,會用簡單的變量代換解某些微分方程.

  4.會用降階法解下列形式的微分方程: 和 .

  5.理解線性微分方程解的性質及解的結構.

  6.掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程.

  7.會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程.

  8.會解歐拉方程.

  9.會用微分方程解決一些簡單的應用問題.

上一頁  1 2 3 4 5 6 下一頁

  編輯推薦:

  考試吧獨家策劃:2015年考研大綱及解析專題熱點文章

  直播解析:考試吧權威名師直播解析2015考研大綱

  2015年全國碩士研究生招生考試公告

  考試吧策劃:2015年考研招生簡章專題

  考試吧考研題庫(新增英語一、二) 智能做題首選 立即體驗!

文章搜索
萬題庫小程序
萬題庫小程序
·章節(jié)視頻 ·章節(jié)練習
·免費真題 ·模考試題
微信掃碼,立即獲!
掃碼免費使用
考研英語一
共計364課時
講義已上傳
53214人在學
考研英語二
共計30課時
講義已上傳
5495人在學
考研數(shù)學一
共計71課時
講義已上傳
5100人在學
考研數(shù)學二
共計46課時
講義已上傳
3684人在學
考研數(shù)學三
共計41課時
講義已上傳
4483人在學
推薦使用萬題庫APP學習
掃一掃,下載萬題庫
手機學習,復習效率提升50%!
版權聲明:如果考研網(wǎng)所轉載內容不慎侵犯了您的權益,請與我們聯(lián)系800@exam8.com,我們將會及時處理。如轉載本考研網(wǎng)內容,請注明出處。
官方
微信
掃描關注考研微信
領《大數(shù)據(jù)寶典》
下載
APP
下載萬題庫
領精選6套卷
萬題庫
微信小程序
幫助
中心
文章責編:wuxiaojuan825