五、多元函數(shù)微分學
考試內容
多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限與連續(xù)的概念 有界閉區(qū)域上多元連續(xù)函數(shù)的性質 多元函數(shù)的偏導數(shù)和全微分 全微分存在的必要條件和充分條件
多元復合函數(shù)、隱函數(shù)的求導法 二階偏導數(shù) 方向導數(shù)和梯度 空間曲線的切線和法平面 曲面的切平面和法線 二元函數(shù)的二階泰勒公式 多元函數(shù)的極值和條件極值 多元函數(shù)的最大值、最小值及其簡單應用
考試要求
1.理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義.
2.了解二元函數(shù)的極限與連續(xù)的概念以及有界閉區(qū)域上連續(xù)函數(shù)的性質.
3.理解多元函數(shù)偏導數(shù)和全微分的概念,會求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性.
4.理解方向導數(shù)與梯度的概念,并掌握其計算方法.
5.掌握多元復合函數(shù)一階、二階偏導數(shù)的求法.
6.了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導數(shù).
7.了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程.
8.了解二元函數(shù)的二階泰勒公式.
9.理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決一些簡單的應用問題.
六、多元函數(shù)積分學
考試內容
二重積分與三重積分的概念、性質、計算和應用 兩類曲線積分的概念、性質及計算 兩類曲線積分的關系 格林(Green)公式 平面曲線積分與路徑無關的條件 二元函數(shù)全微分的原函數(shù) 兩類曲面積分的概念、性質及計算 兩類曲面積分的關系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及計算 曲線積分和曲面積分的應用
考試要求
1.理解二重積分、三重積分的概念,了解重積分的性質,,了解二重積分的中值定理.
2.掌握二重積分的計算方法(直角坐標、極坐標),會計算三重積分(直角坐標、柱面坐標、球面坐標).
3.理解兩類曲線積分的概念,了解兩類曲線積分的性質及兩類曲線積分的關系.
4.掌握計算兩類曲線積分的方法.
5.掌握格林公式并會運用平面曲線積分與路徑無關的條件,會求二元函數(shù)全微分的原函數(shù).
6.了解兩類曲面積分的概念、性質及兩類曲面積分的關系,掌握計算兩類曲面積分的方法,掌握用高斯公式計算曲面積分的方法,并會用斯托克斯公式計算曲線積分.
7.了解散度與旋度的概念,并會計算.
8.會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質量、質心、形心、轉動慣量、引力、功及流量等).
七、無窮級數(shù)
考試內容
常數(shù)項級數(shù)的收斂與發(fā)散的概念 收斂級數(shù)的和的概念 級數(shù)的基本性質與收斂的必要條件 幾何級數(shù)與 級數(shù)及其收斂性 正項級數(shù)收斂性的判別法交錯級數(shù)與萊布尼茨定理任意項級數(shù)的絕對收斂與條件收斂 函數(shù)項級數(shù)的收斂域與和函數(shù)的概念 冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域 冪級數(shù)的和函數(shù) 冪級數(shù)在其收斂區(qū)間內的基本性質 簡單冪級數(shù)的和函數(shù)的求法 初等函數(shù)的冪級數(shù)展開式 函數(shù)的傅里葉(Fourier)系數(shù)與傅里葉級數(shù) 狄利克雷(Dirichlet)定理 函數(shù)在 上的傅里葉級數(shù) 函數(shù)在 上的正弦級數(shù)和余弦級數(shù)
考試要求
1.理解常數(shù)項級數(shù)收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質及收斂的必要條件.
2.掌握幾何級數(shù)與 級數(shù)的收斂與發(fā)散的條件.
3.掌握正項級數(shù)收斂性的比較判別法和比值判別法,會用根值判別法.
4.掌握交錯級數(shù)的萊布尼茨判別法.
5.了解任意項級數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系.
6.了解函數(shù)項級數(shù)的收斂域及和函數(shù)的概念.
7.理解冪級數(shù)收斂半徑的概念,并掌握冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法.
8.了解冪級數(shù)在其收斂區(qū)間內的基本性質(和函數(shù)的連續(xù)性、逐項求導和逐項積分),會求一些冪級數(shù)在收斂區(qū)間內的和函數(shù),并會由此求出某些數(shù)項級數(shù)的和.
9.了解函數(shù)展開為泰勒級數(shù)的充分必要條件.
10.掌握麥克勞林(Maclaurin)展開式,會用它們將一些簡單函數(shù)間接展開為冪級數(shù).
11.了解傅里葉級數(shù)的概念和狄利克雷收斂定理,會將定義在 上的函數(shù)展開為傅里葉級數(shù),會將定義在 上的函數(shù)展開為正弦級數(shù)與余弦級數(shù),會寫出傅里葉級數(shù)的和函數(shù)的表達式.
八、常微分方程
考試內容
常微分方程的基本概念 變量可分離的微分方程 齊次微分方程 一階線性微分方程 伯努利(Bernoulli)方程 全微分方程 可用簡單的變量代換求解的某些微分方程 可降階的高階微分方程 線性微分方程解的性質及解的結構定理 二階常系數(shù)齊次線性微分方程 高于二階的某些常系數(shù)齊次線性微分方程 簡單的二階常系數(shù)非齊次線性微分方程 歐拉(Euler)方程 微分方程的簡單應用
考試要求
1.了解微分方程及其階、解、通解、初始條件和特解等概念.
2.掌握變量可分離的微分方程及一階線性微分方程的解法.
3.會解齊次微分方程、伯努利方程和全微分方程,會用簡單的變量代換解某些微分方程.
4.會用降階法解下列形式的微分方程: 和 .
5.理解線性微分方程解的性質及解的結構.
6.掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程.
7.會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程.
8.會解歐拉方程.
9.會用微分方程解決一些簡單的應用問題.
編輯推薦:
· | 2022考研復試聯(lián)系導師有哪些注意事 | 04-28 |
· | 2022考研復試面試常見問題 | 04-28 |
· | 2022年考研復試面試回答提問方法有 | 04-28 |
· | 2022考研復試怎么緩解緩解焦慮心態(tài) | 04-27 |
· | 2022年考研復試的訣竅介紹 | 04-27 |
· | 2022年考研復試英語如何準備 | 04-26 |
· | 2022年考研復試英語口語常見句式 | 04-26 |
· | 2022年考研復試的四個細節(jié) | 04-26 |
· | 2022考研復試準備:與導師及時交流 | 04-26 |
· | 2022考研復試面試的綜合技巧 | 04-26 |